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ABSTRACT

This thesis studies the dvnanics of a rotating colpressible gas sphere, driven by
internal convection, as a model for the dynamics on the giant planets. We develop
a new general circulation model for the Jovian atmosphere, based on the MITgcin
dnvamical core augmenting the nonhydrostatic model. The grid extends deep into
the planet's interior allowing the model to compute the dynamics of a whole sphere
of gas rather than a spherical shell (including the strong variations in gravity and the
equation of state). Different from most previous 3D convection models, this model is
anelastic rather than Boussinesq and thereby incorporates the full density variation
of the planet.

Ve show that the densitY gradients caused by convection drive the system away
from an isentropic an( therefore barotropic state as previously assumed, leading to
significant baroclinic shear. This shear is concentrated mainly in the upper levels
and associated with baroclinic compressibility effects. The interior flow organizes
in large cyclonically rotating columnar eddies parallel to the rotation axis, which
drive upgradient angular momentum eddy fluxes, generating the observed equatorial
superrotation. Heat fluxes align with the axis of rotation, contributing to the observed
flat meridional emission. We show the transition from weak convection cases with
symmetric spiraling columnar modes similar to those found in previous analytic linear
theory, to more turbulent cases which exhibit similar, though less regular and solely
cyclonic, convection colums which manifest on the surface in the form of waves
embedded within the superrotation. 'We develop a mechanical understanding of this
system and scaling laws by studying simpler configurations and the dependence on
physical properties such as the rotation period, bottom boundary location and forcing
structure.

These columnar cyclonic structures propagate eastward, driven by dynamics sim-
ilar to that of a R.ossbY wave except that the restoring planetary vorticity gradient
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is in the opposite direction, due to the spherical geometry in the interior. We fur-
ther study these interior dynamics using a simplified barotropic annulus model, which
shows that the planetary vorticity radial variation causes the eddy angular momen-
tum flux divergence, which drives the superrotating equatorial flow. In addition we
study the interaction of the interior dynamics with a stable exterior weather layer,
using a quasigeostrophic two layer channel model on a beta plane, where the colum-
nar interior is therefore represented by a negative beta effect. We find that baroclinic
instability of even a weak shear can drive strong, stable multiple zonal jets. For this
model we find an analytic nonlinear solution, truncated to one growing mode, that
exhibits a multiple jet meridional structure, driven by the nonlinear interaction be-
tween the eddies. Finally, given the density field from our 3D convection model we
derive the high order gravitational spectra of Jupiter, which is a measurable quantity
for the upcoming JUNO mission to Jupiter.

Thesis Supervisor: Glenn R. Flierl
Title: Professor, Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Motivation

The study of Geophysical Fluid dynamics (GFD) has evolved tremendously over the

past 60 years. Although not complete, we have today a good basic understanding of
many of the physical processes governing the dynamics of Earth s oceans and atino-

sphere. Many of the unresolved complexities come from the cornplicated interactions

with continental boundaries, ice, topography, ocean bathYmetry, and air-sea interac-

tions. The giant planets which are mainly homogeneous fluid objects do not have

many of these complexities and, due to their fast rotation and large scales, could be
considered as "ideal" GFD objects. Yet, much of the dynamics on these objects are

still poorly understood. These planets reveal some of the most striking dynamical

phenomena in the solar system such as intense multiple jet streams and long-lived
Earth-sized storms. Therefore studying of the dynamics of the giant planets brings

o)portunity for understanding how such deep atmosphere may work and gives a crit-

ical insight to our understanding of basic GFD phenomena.

1.2 The Atmospheres of the Giant Planets of the

Solar System

The four outer planets of the solar system are mainly fluid objects. Due to the light

elements constituting these planets they do not condense at solar system temperatures

and therefore do not have a solid surface; rather their atmospheres are deep and merge
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smoothly with the planet's fluid interiors. Despite their size they all rotate faster than

Earth, and all have latitudinal banding and high-speed jet streams. Weather patterns

have a time-scale ranging from weeks to centuries, and internal heat sources, due to

gravitational contraction, are big and comparable in strength to the external heating

from the sun. Even Uranus, whose rotation axis is tipped in 980 relative to its orbital

axis, still exhibits many of the same phenomena. Here we review the characteristics

obtained by observations of the atmospheres of Jupiter, Saturn, Uranus and Neptune.

1.2.1 The Wind Structure

Zonal Jets: The dominant feature on all the outer planets are strong zonal jets.

Both Jupiter and Saturn have strong prograde eastward equatorial jets around the

equator with weaker multiple east-west zonal jets away from the equator in each

hemisphere. On Jupiter the equatorial superrotating region extends 17' in latitude

north and south of the equator (Figure 1.1), with a maximum wind speed of 140 m/s,

whereas on the Saturn wind speed of the equatorial eastward jet reaches 400 m/s near

the equator, and the equatorial superrotation extends roughly 30' north and south of

the equator. The Jupiter superrotating equatorial jet has two peaks located 80 off the

equator in both hemispheres with a 30% dip in zonal velocity from maximum values

at the equator itself. Wind speed measurements are made in reference to system III,

a uniform rotation rate which is defined by radio emission measurements that are tied

to the magnetic field which is presumably aligned with the bulk interior.

Beyond the equatorial eastward jet, Jupiter has at least six more pairs of east-west

zonal jets in each hemisphere with winds with a maximum of 30 - 50 m/s , includ-

ing one stronger jet at 24N with an eastward wind reaching 130 m/s . Most jets on

Jupiter have the character of a sharper eastward than westward jet, which may be a

consequence of the barotropic stability limit and associated with the positive plan-

etary vorticity gradient (see discussion in section 7.6). Until the Cassini spacecraft

observations (Porco et al., 2003) it was thought that Jupiter's jets extend only up to

midlatitudes, but these observations confirmed that the jets extend (though weaker

than in the low latitudes), all the way to latitude 800 in both hemispheres. In the

high latitudes however, the zonal jets are not associated with cloud bands.

Wind velocities are deduced from cloud tracking and therefore the assumption

that clouds are passive tracers of the wind is inherent to these wind measurements.
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The lack of topography and the longevity of the cloud features on Jupiter are factors

that should reduce the uncertainty of these measurements. Nevertheless, if the cloud

brightness or contrast is correlated to the dynamics, results might be biased (Vasavada

and Showman, 2005). Observed streamlines seem not to overlap (Ingersoll, 1990) so

the observed features seem to represent a single layer near the top of the clouds. Over

the past 40 years of modern measurements, Jupiter's zonal wind profile has remained

nearly constant. The only significant change was a decrease of 40 - 50 m/s in the

eastward jet near 24N (Simon, 1999). Smaller changes have been detected near tile

equatorial region and near the jet at 50N.

Jupiter Saturn Uranus Neptune

Equatorial radius (10' krn) 71.74 60.27 25.56 24.76

Oblateness (% (R, - R,)/R,) 6.5 9.8 2.3 1.7

M ss (1026 Kg) 18.99 5.68 0.86 1.03

Mean density (Kgm - 3 ) 1330 700 1270 1760

Sidereal day (Ir:min) 9:55 10:39 17:14 16:06

Solar distance (AU) 5.2 9.5 19.2 30.1

Sidereal period (years) 11.9 29.5 84 165

Obliquity 30 270 980 290

H-He fraction of mass 99.99 99.8 98.4 97.9

Equilibrium radiating temperature (K) 110 82 58 47

Solar Flux Wi - 2  50.66 14.99 3.71 1.51

Emitted /absorbed flux ratio 1.67 1.78 1.06 2.52

Tropopause height (mb) 140 60 100 50

Equatorial jet velocity (mn/s) 140 275-400 -200 -400

Number eastward jets over 10% of eq. jet 13 6 2 2

Table 1.1: Properties of the giant planets of the solar system (Irwin (2003), or given
in text).

Saturn has a much more subdued appearance than Jupiter due to being masked

by tropospheric and stratospheric haze associated with ammonia condensation. Yet,

its atmosphere is even more energetic than Jupiter's. The wind structure is dom-

inated by the wide equatorial jet which unlike the Jupiter case has gone through

some significant variations between the Voyager (1981) and the Cassini (2005) ar-

eas. Voyager measurements (Ingersoll et al., 1984) have found the equatorial jet to

reach 470 m/s, while more recent cloud tracking by Hubble space telescope during the

period 1996-2004 showed a decrease in the intensity of the equatorial jet to 275 T/s

(SAnchez-Lavega et al., 2003). Measurements by the Cassini spacecraft in 2004 (Porco
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et al., 2005) have esstimated the equatorial jet to be between 250 m/s to 400 m/s. A

possible reason for the variation over time is the fact that the obliquity on Saturn is

26.70, and therefore seasonal changes, including the significant variation in insolation

due to the shadow of the rings, may have caused these changes. The high latitude

jets, however, have been persistent over this period with three distinct eastward jets

(center latitudes higher than 450) in each hemisphere, all with maximum wind speed

over lOOm/s (Figure 1.1).

The ice giants Uranus and Neptune are different than Jupiter and Saturn. Their

hydrogen-helium atmosphere is only a small component of their mass which is mostly

composed of a large ice-rock interior. The denser ice-rock interior is estimated to

occur roughly 5000 km below the cloud level (Irwin, 2003). Unlike the gas giants

the ice giants have retrograde winds at the equator. The mean wind profiles of both

planets are smoother than the gas giants with a westward broad jet at low latitudes,

and an eastward jets at high latitudes. The equatorial subrotating jet on Uranus

reaches 200m/s at the equator and spans 250 degrees in latitude in each hemisphere,

and the southern eastward jet peaks at 60S with winds of 200 m/s (Smith et al., 1986)

as well. Because of Uranus's large obliquity and length of year, we still have not had

a chance to observe its northern hemisphere with modern technology. Neptune has a

stronger and wider subrotating jet reaching a zonal velocity of 400 rn/s and two high

latitude jets (250 m/s at 70 0)(Conrath et al., 1989). The significant difference in the

equatorial jet between the ice giants and gas giants may indicate a relation between

the interior structure to the zonal winds. In fact in some ways it is easier to see how a

retrograde jet is driven rather than a prograde jet: Hot air rising initially at rest from

the interior has less angular momentum due to being closer to the rotation axis and

therefore will tend to go westward at the surface. Similarly fast rotating equatorial

air at the equator will acquire additional eastward momentum as it moves poleward.

As we discuss in this work, a mechanism for superrotation is more complex.

Vertical wind structure: There has been only one direct measurement of the

vertical structure of any of the planets. The Galileo probe descended into Jupiter's

atmosphere and returned data until it reached a depth equivalent of 24 bars. The

probe entered inside the equatorial jet at latitude 7.4N where the eastward wind

velocity at 0.4 bars was 90 m/s (Atkinson et al., 1997, 1998) which was similar to

the wind velocities previously inferred from cloud tracking (Limaye, 1986). The wind

increased down to a level of 4 bars reaching 180 m/s, and then remained constant for
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as far as the data could be retrieved at the 24 bar level. This result is often used as

evidence that the winds are deep, though one should remember that beyond the point

that this is just a single measurement, the data only accounts for a depth of 150 km

which are no more than 0.22% of the radius of Jupiter. In addition the probe entered

in a "hot-spot" (the equatorial zone is punctuated with 10-13 such 5 Itm spots (Ortiz

et al., 1998)), which may have anomalous dynamics because of non-zonal motions

that have been associated with them (Vasavada et al., 1998).

Other than this measurement, vertical wind structure has been deduced from the

horizontal temperature gradient using the thermal wind relation. This technique is

very limited due to the observations being only of the higher levels. Based on thermal

wind observations of air temperatures from less than 0.1 bar to - Mar Pirraglia et al.

(1981) suggest that the jets decay with height above the cloud level (Conrath et al.,

1981). Gierasch (1976) suggests that thermal contrasts arising from latent heat release

during the condensation of water at altitudes of 5- 10 bars can be large enough so that.

through thermal wind balance the jets would not extend a depth of 10 bars (Ingersoll

and Cuzzi, 1969). Others suggest that, due to the internal heating the atmosphere

below that cloud level is close to an isentropic state and then the jets extend to the

depth of the planet (Busse, 1976). We discuss these two approaches in greater length

in the next section.

Recently two strong convective outbursts that erupted 9 hours apart and lasted

two months were identified near the peak of the 23N jet (SAnchez-Lavega et al., 2008).

They, traveled at a velocity 169rn/s which is stronger than the local jet velocity,

causing significant mixing in their wake. The jet however remained robust against

the turmoil generate(] by the disturbance evolution. This may suggest that the jet

extends deeper below the upper clouds where the motions were measured.

Vortices: Besides the zonal jets the most prominent feature on Jupiter is the

great red spot (GRS). The GRS is an anticyclone extending 10.5 degrees in latitude

(centered at 23S) with an oval shape and a longitudinal extent of about 17000 kin

(Simon-Miller et al., 2002). The maximum velocities of the GRS range from 120 m/s

(Dowling and Ingersoll (1988), based on Voyager data) to 150ni/s (Simon-Miller

et al. (2002), based on Galileo data). The maximum relative vorticity is 6E - 5 S-I

which is roughly one third of the planetary vorticity at that, latitude. The center of

the vortex is found to be about 8 K cooler than the surrounding cloud tops. Thermal

wind balance then implies that the wind speed should decrease with depth and then
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Figure 1.1: The mean zonal velocity Im/s as function latitude for Jupiter and Saturn
as measured by Voyager. Data is courtesy of A. Sanchez-Lavega, A. Showman and
A. Vasavada.

the GRS would be only 200 km thick. Records of the GRS go back as far as 1665

to observations made by Cassini (Cassini, 1672), indicating this anticyclonic storm

has probably existed for centuries. During the period 1880-2002 the GRS has moved
westward with an average speed of 3 m/s and superimposed on this it oscillates 10 in

longitude every 90 days (Trigo-Rodriguez et al., 2000). There are many records (e.g.

Sanchez-Lavega et al., 1998) of interactions of the GRS with other vortices absorbing

part of them and expelling other parts.

Although the GRS is the largest and most sustained vortex on Jupiter, there are

many other vortices with diameter ranges of 1000 - 5000 km (Simon et al., 1998).

Typically the ones at high latitudes are smaller and rounder than the ones at low

latitudes. The transition from round to oval vortices occurs at diameters of - 2000 km

indicating that this scale might be where the vortices feel the effect of the planetary

vorticity gradient (Vasavada and Showman, 2005). In chapter 7 we use this scale

as the deformation radius in the two layer model. Over 90% of the vortices on

Jupiter are anticyclones. There is a broad literature on this subject and about the

possible preference for anticyclones (Flierl, 1987; Marcus, 1988, 1990; Dowling and

Spiegel, 1990; Yano and Flierl, 1994; Showman, 2004); in this work we do not discuss
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this issue. Interaction of vortices is often observed (Sanchez-Lavega et al., 2001), and

quasigeostrophic models have been successful in describing these interactions (Youssef

and Marcus, 2003).

1.2.2 The Thermal Structure

Temperature: Thermal infrared radiation measurements for all four giant planets

show a nearly uniform meridional thermal flux profile. On Jupiter there are mea-

surements where the poles are even found to be slightly warmer than the equator

(Ingersoll, 1990), and Voyager found the poles of Uranus to be slightly colder than

equator although the poles receive more sunlight (Conrath et al., 1989) due to the

extreme obliquity. Radiation is emitted predominantly from the 0.3-0.5 bar pressure

level and eflective temperatures are in average 124K, 93K, 59K and 59K for Jupiter,

Saturn, Uranus and Neptune respectively at that level. Variations from these mean

emission temperatures are mainly associated with the cloud structure and not with

the latitudinal location, although solar heating is latitudinally distributed based on

the season and obliquity.

All four planets have a clear tropopause at 140. 60. 100 and 50 mbar respectivel.v

(beginning with Jupiter). which have temperatures of 110K, 80K. 49K and 50K re-

spectivelY (Bagenal et al., 2004). Below the tropopause the temperatures increase

generally following a nearly dry adiabatic lapse rate (Lindal et al.. 1981; Seiff et al.,

1996). The stratospheric temperature in Saturn's atmosphere is generally lower than

in Jupiter's stratosphere as can be expected due to its further distance from the sun:

however, on Neptune the stratospheric temperatures are hotter than on Uranus. Only

Jupiter has good exosphere measurements reaching 1350K, 800 km above the 1 nibar

level (Seiff et al., 1997).

Energy balance: Measurements from both Galileo and Cassini provide estimates

of the radiation at the upper atmospheres. Infrared radiation can not penetrate the

clouds and therefore the measurements reflect the temperature of the upper part of

the atmosphere. All planets (except Uranus) radiate away more energy than the'

absorb, implying an internal heat source. The radiation is also distributed more

uniformly than the absorbed sun light, which suggests that there must exists some

mechanism for meridional heat transport (Ingersoll and Porco, 1978). On Jupiter

the emission is mostly radiated in the infrared between 10 and 100 jim and has been
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estimated quite accurately. The observed energy is calculated by the incoming energy

from the sun and the albedo. This allows estimating the internal flux from the core

(5.444±0.425Wm- 2 on Jupiter) (Hanel et al., 1981) and calculating the energy balance

defined as the ratio of emitted thermal to absorbed solar energy. On Jupiter this is

1.668 ± 0.085, on Saturn 1.78 (Hanel et al., 1983) and on Neptune 2.3 (Pearl and

Conrath, 1991). The exception is Uranus where the internal heat flux is much less

than the solar insulation and this ratio is 1.06 Pearl et al. (1990).

Thermal Waves: Several wave features have been discovered by the thermal

measurements on the giant planets. Flaser and Gierasch (1986), who used Voyager

images of Jupiter, discovered waves traveling within the equatorial superrotating jet

with wavelengths of 300 km. They suggested that these waves may indicate a stably

stratified layer beneath the clouds supporting the propagation of gravity waves. This

hypothesis was later supported by the Galileo entry probe (Seiff et al., 1997) suggest-

ing there is a stably stratified layer between 5 and 16 bars. Similar waves were later

also seen in the Galileo data, (Belton et al., 1996), and Bosak and Ingersoll (2002)

suggested that these waves are produced by Kelvin-Helmholtz instabilities. A much

clearer observation of these waves was recently obtained by the high resolution cam-

eras on the New Horizons spacecraft (Reuter et al., 2007). They find the waves to

persist around the planet and occupy a latitudinal region of 100 around the equator.

These waves have crests which extend further eastward at the equator than in higher

latitudes creating crescent shaped waves propagating eastward at a phase speed of

roughly double the local mean velocity. The phase speed for these waves is estimated

between 204 and 276 m/s (Reuter et al., 2007) while the local mean velocity from

cloud tracking both from New Horizons and HST measurements is 100 m/s .
Larger, planetary scale waves have also been identified on Jupiter. Wavenumber

10 waves were found at equatorial latitudes at depths between 270 mbar and 1 bar by

several authors (Magalhaes et al., 1989; Orton et al., 1994; Harrington et al., 1996;

Deming et al., 1997). The source of the waves is unknown and hypothesis range

from vertical propagation of Rossby waves (Orton et al., 1994) and mixed Rossby-

gravity waves (Deming et al., 1997), to connection with the plumes in the equatorial

"hot-spots" (Ortiz et al., 1998; Showman and Dowling, 2000) or association with

deep convective cells (Magalhaes et al., 1989). The near stationary appearance of

these waves with respect to system III implies possibly a dynamical link between the

interior bulk rotation of the planet (Irwin, 2003). Another interesting feature which
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was observed in stratospheric temperatures on Jupiter was a periodic 4 year variation

in zonal mean temperatures at 20 mbar (Orton et al., 1991). This feature which

has been continuously observed since 1978 takes the form of periodic warming of the

equator and cooling of the 15' - 30' latitude regions in both hemispheres, and then

cooling of the equatorial region and heating of the higher latitudes. There have been

attempts to link this oscillation to the QBO on Earth (LeovY et al., 1991), but the

precise identification of this oscillatory behavior remains elusive.

1.2.3 Clouds

Jupiter's visual appearance is dominated by dark "belts" and brighter "zones" . Al-
though the general belt/zone structure appears to be very stable, the brightness,

latitudinal extent and presence of discrete features has varied significantly over time
(Vasavada and Showman, 2005). The belt/zone structure is partially associated with

the wind structure. where the peak of the zonal velocities appears to happen on the

boundaries between the belts and zones. The zones are anticyclones, thus in the
northern hemisphere they have an eastward jet on its poleward side and a westward

jet on the equatorward side, and belts are cYclnic. The association between the

belts/zones and wind is less clear at high latitudes. The zones appear more uniform

and steadier in time than tie belts, and clouds in them typically extend to higher

altitudes (a few hundred mbar) than in the belts . The origin of the colors and how
they respond to the winds is uncertain.

Chemical structure and Clouds: In all the outer planets the atmospheres are

comt)osedi mostly of molecular hydrogen and helium, with some heavier compounds

which vary between the four planets. The abundance of 'heavY' elements in the whole

)lanet is estimated to be 3 times the solar for Jupiter, 5 times the solar for Saturn and
increasing to 20-30 times solar for Uranus and Neptune. The atmospheres themselves

contain only a fraction of this, and the most abundant elements after hydrogen (H2)

and helium (He) are. in decreasing order, water (H20), methane (CH 4), ammonia
(NH3 ), and hydrogen sulphide (H2S) (Irwin, 2003). The upper atmospheres are

cold enough so that some of these elements condense at various levels forming the

observable cloud decks. On Jupiter the visible clouds are usually ammonia colored

by sulfur, phosphorus and carbon compounds, and their top pressures are thought to

be in the range of 0.3 to 3 bars while their base at 5 to 15 bars.
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1.3 Previous Dynamical Models

Two general approaches have been taken to explain the strong zonal jets on the

Jovian atmospheres. The two emerged almost at the same time in the mid 1970's

after the first detailed observations were obtained by the first space missions. Busse

(1976), inspired by the Taylor-Proudman effect, suggested that if the flow is deep and

extends all the way through the planet, then the jets may be the surface manifestation

of differentially rotating cylinders concentric with the planet's rotating axis. On

the other hand, geostrophic turbulence theory (Rhines, 1975, 1979), assuming the

dynamics are confined to an outer "weather layer", suggests that the zonal jets emerge

from decaying or stochastically forced turbulence on a 8 plane. These two approaches

have been in debate ever since.

1.3.1 Shallow Models

The first to apply the "shallow" approach to Jupiter was Williams (1978, 1979) who

used both barotropic and baroclinic models to show that an imposed turbulent eddy

field can lead to an inverse energy cascade leading to jets on the order of the Rhines

scale. Other authors have studied zonal jets appearing from geostrophic turbulence

(Vallis and Maltrud, 1993; Cho and Polvani, 1996; Huang and Robinson, 1998; Man-

ifori and Young, 1999; Huang et al., 2001; Smith, 2003; Lee, 2004). Panetta (1993)

showed that jets can emerge from baroclinic instability in a two layer model which has
an imposed thermal gradient. This model allows transfer of energy from the upper to

the lower layer and results in an equivalent barotropic jet. These jets seem persistent

and stable, however they appear primarily when averaged, while the instantaneous

fields are dominated by the eddies. Williams (2003) has produced jets in a baroclinic

primitive equation system on a sphere and shows that, depending on details of the

stratification and shear, the jets can migrate equatorward. Cho and Polvani (1996)

impose an eddy field in a shallow water layer on a sphere and show that the eddy field

evolves to a set of zonal jets at the lower latitudes, with an equatorial westward jet.

Using a barotropic vorticity model with small scale random forcing and large scale

friction Huang et al. (2001) and Galperin et al. (2001) suggest a scaling law to the

energy spectra of the jets and show (Galperin et al., 2001, 2006) that it matches the

spectrum of the observed jets on Jupiter. Smith (2003) shows multiple jets emerging

from stochastically forced QG turbulence in an equivalent barotropic system. Show-

28



man (2007) show that shallow water simulations forced by mass pulses representing

episodic thunderstorms in the Jovian atmosphere (Ingersoll and Cuong, 1981) can

form equatorial jets (subrotating) and anticyclonic vortices at higher latitudes.

As applied to a gas giant's atmosphere, these shallow water or quasi-geostrophic

models have several flaws exemplified by comparison to Jupiter: first, the observed

winds violate the barotropic stability condition (Ingersoll and Cuong, 1981), thus

- UYY < 0 at some latitudes, although the zonal winds appear to be very stable.

In contrast, all of the models produce curvatures uYY which are smaller than i3, so

that the predicted jets are weaker or wider than the Jovian ones. Second, none

of these models can reproduce a superrotating jet at, the equator. Some shallow

water models (Cho and Polvani, 1996; Cho and Polvani, 1996; Iacono et al., 1999a,b)

produce a westward retrograde jet, and typically the jets that are produced are not

much stronger than the eddy field. Third, these shallow models assume a boundary

at a depth of about one scale height, with the fluid below being motionless. But

the thermal wind shear observed on Jupiter (Conrath et al., 1981; Gierasch et al.,

1986) suggests that the flows will extend deeper and may increase, rather than (lie out.
with depth. The Galileo probe showed this kind of velocity structure (Atkinson et al.,

1996), implying two separate regimes; an upper radiative regime (above 4 bars) anti

an inner deep adiabatic regime below. Fourth, these models either require random

forcing or deal with decay of strong initial perturbations, leaving it unclear how such

a state can be maintained. The exceptions, Panetta's (1993) and Williams' (2003)

baroclinic instability models, require large-scale baroclinicitY strong enough to satisfy

the Charney-Stern theorem, so that turbulence can be generated and maintained b)*"

feeding on the available potential energy. But the observed global scale teml)eratur

differences (Ingersoll, 1976; Hanel et al., 1981, 1983) seem to be much smaller. Finally,

for Jupiter, Saturn and Neptune the internal heat flux is estimated to be as strong

as the absorbed heat flux from the sun (Hanel et al., 1981, 1983; Pearl and Conrath,

1991); the shallow models do not attempt to account for the heat balance.

In Kaspi and Flierl (2007) (also chapter 7 of this thesis) we show that baroclinic

instability in a two layer quasigeostrophic model with the bottom layer having a

different planetary vorticity gradient representing the deep convective columns (see

next section), can form multiple zonal jets that appear in the instantaneous fields

(thus stronger than the eddies), and violate the barotropic stability condition but still

are stable and consistent in time. Unlike the previous baroclinic models (Panetta,
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1993; Williams, 2003) due to the different geometry this model does not require a

high level of baroclinicity, to generate turbulence which then cascades to zonal jets.

Another approach using a shallow model was to try and deduce the deep circula-

tion by observing the potential vorticity in the overlying flow. Dowling and Ingersoll

(1988, 1989) have derived a family of possible equivalent height fields by assuming

conservation of potential vorticity in a barotropic shallow layer. This allows deducing

the deep flow from the data (up to a parameter), without making apriori assumptions

about the deep layer. One problem with this approach is that the only place where
there is enough variation in vorticity is near big vortices such as around the giant red

spot and white oval. Dowling (1993) shows that this family of equivalent height fields,

corresponds to a case where the deformation radius is on the order of the Rhines scale,

and then the flow is stable. Further, by later observations from the impact of comet

Shoemaker-Levy on Jupiter (Hammel et al., 1995), a specific member of this family

can be singled out (Dowling, 1995), and a prediction can be made about the strength

of the deep flow which is comparable to the value obtained from the Galileo entry

probe (Atkinson et al., 1996).

Ioannou and Lindzen (1993a,b, 1994) put forward a totally different approach

to explain the zonal jets (Lindzen, 1991). They suggest that if the interior is even

marginally statically stable, then tides from a dominant moon may provide the mo-

mentum source maintaining the jets. They show that the response to the tides results

in high order Hough modes, which have meridional alternations resembling the alter-

nations in the jets.

For Earth's atmosphere shallow water and quasi geostrophic models have had

tremendous success in describing some of the fundamental dynamics. Due to the

differences in the Jovian atmosphere pointed above it is not clear if this would be

the case for the giant planets. Yet, the striking similarity of some of the phenomena

observed on the Jovian atmosphere to the terrestrial atmosphere, and to features

obtained in these models would lead to think that at least part of the dynamical

understanding is captured by the shallow models. Showman et al. (2006) point out

that the source of the forcing (whether deep or shallow) may be decoupled from

whether the zonal winds are deep or shallow. Therefore even if the winds are deep

they might have shallow sources and visa versa. Next we turn to discus the second

approach - the deep models.
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1.3.2 Deep Models

The "deep" approach assumes that the jet's generation comes from within the interior

of the planet. The assumption is based on the fact that since the planet is heated from

within, convection drives it close to an adiabatic state, with nearly zero stratification.

leading to Taylor columns that penetrate throughout the planet, and therefore there

is no confinement to a thin spherical shell. Inspired by laboratory experiments (Busse,
1970), where a homogeneous rapidly rotating sphere was heated from the inside and

such a multi-column structure was formed, Busse (1976, 1994) suggested that the

interior of a planet may be occupied by Taylor columns that surround a hot core.

He suggested that the multi-layered structure of convection rolls might produce the

zonal jets through nonlinear interactions among the columns.

The problem of onset of convection in a rotating sphere was first studied in terms

of axisymmetric solutions (e.g. Chandrasekhar, 1952), but as noted first by Veronis

(1959) convection tends to form non-axisymmetric cells. Chandrasekhar (1961) set

the standard formulation for the rotation dominated problem which was adopted in

following work discussed here. Roberts (1968) showed that for large enough Taylor

numbers (rapid rotation) the asymmetric modes will be the fastest growing unsta-

ble modes. These modes also appeared in laboratory experiments (Busse, 1970) and
were the basis for Busse's model for Taylor columns in the interior of the giant plan-

ets (Busse, 1976). In both cases the asymmetric modes where confined to a thin

chain of convection columns at a distance of about half the radius from the axis of

rotation. Later studies (Zhang and Busse, 1987) showed that the radial structures

of these modes are sensitive to the Prandtl number with a sharp transition between

two distinct modes. In the first mode, where Prandtl numbers are higher, convection

columns are at about half the distance to the axis of rotation as suggested by the
asymptotic theory (Roberts, 1968). However, as the Prandtl number is decreased, the

columns begin to stretch and develop a spiraling shape (Zhang, 1992). Decreasing

the Prandtl number beyond a critical point leads to a new state with circular modes

attached to the outer wall. Zhang (1994) showed that these modes can be under-
stood as inertial oscillations which are slightly modified by the effects of viscosity

and buoyancy. These calculations matched asymptotic theories discussing the radial

dependence of the unstable modes for the linear problem of the onset of convection,

and was studied both in equivalent cylindrical systems (Yano, 1992) and for a full
sphere (Jones et al., 2000).
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Ingersoll and Pollard (1982) noted that a columnar structure as described by

Busse in a sphere is analogous to 3 plane dynamics only with a different definition

of 3. Consequently arguments from Rhines (1975) may still apply and deep two-

dimensional turbulence may create jets. An advantage of this theory is that the

Ingersoll and Pollard (1982) equivalent barotropic stability criterion, which has an

effective 3 which is negative and three times the value from the standard planetary

3, is more consistent with the Jupiter data. On Jupiter the observed winds are close

to marginal stability according to this criterion. Yano and Flierl (1994) have used this

idea of a negative bottom layer 3 to demonstrate its effect on an isolated vortex like

Jupiter's giant red spot in a zonal jet. We use this parametrization for the bottom

layer in the two layer model in chapter 7.

The spiraling modes obtained by Zhang (1992) have a structure that adjacent

convection cells have opposite circulations. This character for weak linear convection

appears in other studies as well (e.g. Zhang and Schubert, 1997; Christensen, 2002).

Following the negative 3 plane idea of Ingersoll and Pollard (1982), such a structure
when perturbed, develops local relative vorticity based on the interaction of the col-

umn with an exterior boundary, as the columns conserve their total circulation when

stretched or squeezed (Busse, 1994). Such an interaction can cause propagation of the

vortices similar to a propagation of a Rossby wave (Busse, 1986). Busse and Hood

(1982) showed that linear modes will tend to tilt based on the direction of the outer
boundary slope, and eastward or westward shear will form. This shear however was

no stronger than the perturbation itself. The spiraling alternating linear modes ob-

tained by Zhang (1992) have positive Reynolds stresses which can create a mean flow.

Zhang and Schubert (1996, 1997) have showed that even for a thermally driven con-

vective interior bounded by a corotating convectively stable stratified layer, the fluid

motions resulting from the instability develop similar linear modes that concentrate

primarily in the outer stable region.

All the models discussed above were limited to either linear or weakly nonlin-

ear regimes. It is not obvious that any of these modes, and therefore the resulting
mechanisms can be maintained in the nonlinear regime. Glatzmaier and Olson (1993)

showed numerically Taylor columns can still be maintained when the Rayleigh num-

ber is 50 times critical but their experiment was limited to a slowly rotating regime.

A second shortcoming of the models discussed above, is that they were all limited

to the Boussinesq approximation. The only compressible attempt to model such
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flows (Gilman and Glatzmaier, 1981) was in the solar context (slow rotation) using

the anelastic approximation for an ideal gas (Ogura and Phillips, 1962), where they

showed that non-axisymmetric convection modes still exist in the compressible fluid

for the parameter region of their examination.

With the advance of computational abilities numerical 3D models (Sun et al., 1993;

Aurnou and Olson, 2001; Christensen, 2002) solving the full Navier-Stokes equations

subject to tie Boussinesq approximation have demonstrated that in a rapidly rotating

system a broad eastward flow can develop at the equator. This flow has been referred

to result from the so-called Busse columns, though none of these studies actually

demonstrated such columns explicitly. Christensen (2002) shows formation of spiral-

ing convection cells in a 3D numerical model for case of quasi-stationary convection

and shows that for higher Rayleigh numbers the convection becomes chaotic with a

superrotating equatorial flow and higher latitude subrotating flow. The subrotating

flow had near equal velocity along the direction of the axis of rotation. A major

difference between these flows and the one suggested by Busse (1976) is that they

did not develop multiple nested cylinders that would interact and produce multiple

zonal jets. Multiple band structures which result from columnar convectionl have
been shown in laboratory experiments by Manneville and Olson (1996) though these

bands occupy region only within 450 from the equator. Heimpel et al. (2005) using

a Boussinesq model covering one tenth the depth of the planet and a longitudinal

section of 45', have produced high latitude jets driven by internal convection which

appear when time averaged. These jets though seem to depend on the bottom flux

fed by the Rayleigh-Benard type convection, and the width of the equatorial flow

depends on the location of the bottom boundary.
The biggest objection to the deep theories is that we do not observe any definite

columnar features at the top levels and the similarity between north and south hemi-

sphere, although partially apparent, is not exact. This though can be resolved bY the
fact that at the cloud levels other processes including 2D turbulence can play a role

breaking the symmetry at that level. Another criticism of the deep models is that

they do not take into account the existence of a magnetic field (Kirk and Steven-

son, 1987). This is based on the notion that the transition between molecular and

metallic hydrogen acts as an interface and inhibits the convection from acting across

that interface (Stevenson and Salpeter, 1976). The depth of that transition remains

poorly known but probably lies between 0.7 - 0.9 Jupiter radii and at pressures of
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1 - 3 Mbar (Guillot et al., 2004). Lorentz forces in the metallic region can act to

break the zonal flows there. Recently, Liu (2006) suggested that if the zonal flows

were completely barotropic and magnetic field in the interior can be inferred from

their exterior values, then ohmic dissipation will cause breakdown of the deep zonal

flow even above the level of the phase transition. Laboratory work indicates that

the transition from molecular to metallic hydrogen may not be sharp in density and

conductivity (Weir et al., 1996).

The two major drawbacks of these models are the use of the Boussinesq approxi-

mation and having the physical understanding of the dynamics limited to the linear

models. In this work we attempt to address these two issues.

1.3.3 Discussion: Shallow vs. Deep Approaches

Both approaches have compelling arguments to why they are important to the dy-

namics. On one hand due to the strong convection it is hard to escape having a

nearly barotropic interior and then the Taylor-Proudman theorem will hold in the

interior. On the other hand the resemblance to terrestrial weather and the fact that

infrared observations show that the atmosphere is not barotropic near the cloud level,

supports the approach that there is a stability stratified baroclinic level beneath the

clouds and the dynamics may be governed by shallow processes only. Bridging the

two approaches, a scenario that the atmosphere is indeed barotropic beyond some

level but the velocities have become weak by that depth would be therefore be a

plausible case. However, the Galileo probe which showed that indeed the atmosphere

is baroclinic but in the "wrong" way; therefore increasing velocities down to a certain

depth where they become constant would seem to lead back to the importance of

deep processes.

An important difference worth noting between the shallow and deep approaches,

is that the shallow models assume that only full 2D turbulence can explain the jets,

while deep models suggest that stepping up from linear to weakly nonlinear theory

leads to closer understanding of reality. Obviously linear dynamics could not describe

the mechanisms leading to formation of jets in 2D turbulence; however as we show in

chapter 7 weakly nonlinear baroclinic instability can give insight to the formation of

quasigeostrophic jets. On the other end we show the transition from weakly nonlinear

to fully turbulent dynamics in our deep model.
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An appealing possibility is that the actual jet structure lies somewhere between

the two, shallow verses deep, scenarios. Ingersoll and Cuong (1981) argue that the

zonal flow is deep rooted while the coherent vortices like the GRS are confined to

the shallow part of the atmosphere. However, Yano and Flierl (1994) point out that

a baroclinic GRS produces a barotropic radiating field and thus the GRS could not
be sustained. Vasavada and Showman (2005) point out that such a deep rooted

superrotation underlving a shallow atmosphere can explain the near, but imperfect,

symmetry between northern and southern hemispheres. In this respect as pointed by

Yano (1994) the coupling of deep thermal convection with the atmospheric circulationl

is the next step for modeling.

1.4 Fundamental Questions

The previous two sections have pointed to the key observational data and modeling

approaches in our attempt to understand the dynamics on the giant planets. Above

all they indicate the discrepancy between the amount of data that we know and

the level of understanding we have about the dynamics. Questions such as, what

drives the zonal jets? what controls the speed and width of the zonal .jets? Why

are the equatorial jets on tihe gas giant superrotating? Why is there an opposite

equatorial rotation on the ice giants? How deep are the zonal jets? What controls

the jets stability? What drives the wave features observed within the equatorial

superrotation? and what causes the uniform emitted thermal flux, are all first order

questions that must, be answered to understand these dynamics. Our goal is to try

and address all these questions, and we come back to discuss them in chapter 8.

1.5 Methodology

The previous sections highlighted the need for a model which is both non-Boussinesq

and capable of studying convective turbulence in the full 3D system. Our main tool in
this thesis is such a model that we built based on the non-hydrostatic dynamical core

of the MITgcrn. We focus on the understanding of specific physical processes using

simplified configurations of this model, a variety of other simpler numerical models
and analytic models. Our new general circulation model is an improvement over

previous models in several aspects: It is both non-hydrostatic and non-Boussinesq
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and thus can address convection in a compressible system (anelastic). The model is

deep, and therefore can address a full sphere of gas (beside a small interior core), with

a constant number of vertical levels per scale height, thus keeping a high resolution in

the atmosphere. It uses an equation of state suited for hydrogen-helium mixtures and

therefore beyond accounting for the compressibility it has the capability of including

the complex thermodynamics in the deep interior of the planet. Finally, it uses a

forcing scheme that represents the cooling of the whole vertical structure, different
from Rayleigh-Benard type convection set by the boundaries, and has a radially

dependent gravity field and thermodynamic variables.

We progressively build a physical understanding of the dynamics beginning from

the simpler 2D slowly rotating and Boussinesq cases and move to the 3D rapidly

rotating and anelastic cases. We perform studies for understanding the roles of pro-

cesses such as rotation and stratification. For the full 3D anelastic model we extend

these process studies to explore the parameter space of Rayleigh, Ekman and Prantdl

numbers and other model settings such as the total aspect ratio and forcing. We then

focus on the mechanisms driving the cyclonic convection columns, baroclinic shear

and equatorial superrotation. We show that the mechanisms suggested in previous
work of deep convection models mostly in the linear and weakly nonlinear regimes

can be identified in the GCM for the weakly turbulent cases. The transition to

stronger turbulent regimes possesses some of the same mechanisms but also has some

differences.

Since Jupiter is the giant planet that we have the most data about both in terms

of meteorology and internal thermodynamics, we set our model parameters to the

Jupiter regime. Many of the physical processes that we find however would be appli-

cable to Saturn as well. There is a high level of uncertainty regarding dynamics in

the plasma interior of the planet. Most previous models set the bottom limit above

or at the level of the molecular-metallic boundary. Although this might not be the

best representation of Jupiter itself, we deliberately push the bottom limit well below

this level in effort to study the dynamics when the vertical and horizontal scales are

comparable. In fact, as we show, when using a thinner (and maybe more realistic)

spherical shell some of the dynamical features, such as the width of the superrotating
jet, resemble more the observations of Jupiter. In order however not to be biased by

this, and for the generality of the study most of the analysis is done with an aspect
ratio factor of two between outer and inner shell boundary. We do however show the
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whole range from a thin spherical shell to a full sphere.

A completely different model is used in chapter 7 to study the formation of multi-

ple zonal jets. This is a quasigeostrophic two layer model, which has a representation

of the deep dynamics which are demonstrated by the full GCM (although this study

proceeded the development of the GCM). Here again we use a hierarchy of models

ranging from linear stability analysis, through a weakly nonlinear theory and a non-

linear model truncated to one growing mode, to a fully nonlinear model. We show

that multiple zonal jets can form from baroclinic instability and an inverse energy

cascade in geostrophic turbulence.

1.6 Thesis Overview

\\e begin in chapter 2 by a description of the new general circulation model. Be-

Yond the issues of adapting the MITgcm dynamical core to the deep anelastic system.,

in this chapter we discuss in detail the anelastic approximation itself and present

a generalization to previous work showing that the anelastic approximation can be

applied, and is energetically consistent, with a general equation of state. Chapter 3

discusses results from the numerical model, beginning from results from 2D axisYm-

metric calculations through results from the 3D anelastic calculations. Within the 2D

framework we present only results that are robust and hold for the 3D case (such as

the effect of rotation), or results which are different (such as equatorial zonal flows)

but highlight the role of the asymmetries in driving the 3D dynamics. Another re-

sult obtained from the axisymmetric model is the dependence of the critical Rayleigh

number on latitude. We solve for the 2D Boussinesq case using a local approximation

analYtically, and then demonstrate numerically. The latter part of this chapter is

devoted to presenting results from the 3D anelastic model which will be a framework

for fumture discussion and interpretation.

In chapter 4 we discuss the baroclinic structure of the zonal velocity. The main

paradigm here is that the Taylor Proudman theorem should apply for the zonal veloc-

itY whether the fluid is anelastic or Boussinesq as long as the fluid is in a barotropic

state. We show that, baroclinic contributions due to convection are in fact important

in driving the velocity away from the Taylor-Proudman regime, and the baroclinic

contributions due to compressibility create a shear in the zonal velocity while keeping
the alignment with the axis of rotation. We show that although the absolute value
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of the velocities depends on the model parameters the vertical structure of the zonal

flow does not. We look at the zonally averaged momentum budget, and show that

eddy momentum fluxes acting away from the axis of rotation drive momentum to

the exterior to generate the superrotating equatorial winds. These eddy momentum

fluxes are strongest along a cylindrical surface within the sphere. We show that this

cylindrical surface is caused by smaller scale convection cells, parallel to the axis

of rotation, which surround the interior core and penetrate throughout the planet.

Different from the convection columns suggested by Busse (1976), these cells are all

cyclonic.

In chapter 5 we use three different models to focus on the mechanisms driving

the cyclonic columns and equatorial superrotation. We look at the GCM in a regime

of weak convection where we can better identify the physics driving the circulation

we see in the more turbulent cases. This parameter regime of the GCM allows us

to clearly identify the positive (eastward) phase speed of the convection columns. It

shows the transition from an initial weak-velocity state with alternating cyclonic and

anticyclonic modes, which are similar to modes seen in linear and weakly nonlinear

studies such as Zhang (1992); Zhang and Schubert (1997), to a state with only cy-

clonically rotating columns. The correlation within the columns between the zonal

and vertical velocity anomalies drives the upgradient angular momentum fluxes. This

weakly nonlinear mode of the model also allows us to follow in a more precise way (due

to the less noisy solution) the momentum budget. We follow Ingersoll and Pollard

(1982) and show that their barotropic cylindrical model represents well some aspects

of the turbulent interior and can explain the direction of propagation (through an

equivalent Rossby wave mechanism) and roughly account for the number of convec-

tion columns. Finally, we focus on the mechanism for the angular momentum flux by

using a simplified barotropic annulus model which allows studying the zonal tilt in the

eigenmodes, which are analogous to a slice through the spiraling convection columns

seen in the full GCM, and point to the role of the planetary vorticity gradient and

viscosity in creating these modes.

In chapter 6 we explore the parameter space of the model. Due to the relative

simplicity of the model the parameter space is rather limited and allows doing a

sensitivity analysis to most parameters. We divide the parameters into two groups:

one of parameters which are associated with the specific configuration of the model

such as the location of the boundaries and model resolution; and the second are
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parameters controlling the coupled six equations we solve which are the Rayleigh,

Ekman, Prandtl numbers, the choice of the forcing profile and the details of the

equation of state. We begin by varying the depth of the domain from a thin shell

(10% of the planet's radius) to almost a full sphere (93% of the radius) and look

at the implications in terms of the location of the columns and details of the zonal

flow. Then we do a systematic study varying the nondimensional numbers controlling

the simulations, look at specific solutions which appear during spin-up and study the

dependence on different forcing profiles. Since this is a new model this study is

essential for any interpretation of our results.

Chapter 7 stands on its own as an independent study, but uses some of the con-

cepts developed in the previous chapters as motivation for the model setup. The main

concept we take from the deep model (and was suggested originally by Ingersoll and

Pollard, 1982) is a negative 3 plane which comes from the opposite direction of the

background planetary vorticity gradient in the interior of a fluid sphere demonstrated

in chapter 5. We propose that baroclinic instability of a weak shear may play an im-

portant role in the generation and stability of the strong multiple zonal .jets observed
in the atmospheres of the giant planets. We use a two-layer quasigeostrophic model

on a 3 plane where the bottom layer has a negative 3. Linear stability theory predicts

that tile high wave number perturbations will be the dominant unstable modes for a

small vertical wind shear like that inferred from observations. NVe develop a nonlin-

ear model truncated to one growing mode which generates a multiple jet meridional

structure, driven by the nonlinear interaction between the eddies. In tile weakly

supercritical limit, this model agrees with previous weakly nonlinear theory, but it

can be explored beyond this limit allowing the multiple jet induced zonal flow to
be stronger than the eddy field. Calculations with a fully nonlinear pseudo-spectral

model produce stable meridional multi-jet structures when beginning from a random

potential vorticity perturbation field. The instability removes energy from the mean

state weak baroclinic shear and generates turbulent eddies that undergo an inverse

energy cascade and form multi-jet zonal winds. The jets are the dominant feature

in the instantaneous upper layer flow, with the eddies being relatively weak. The
jets scale with the Rhines' length, but are strong enough to violate the barotropic

stability criterion. We show that the basic physical mechanism for the generation and

stability of the jets in the fully nonlinear two layer numerical model is similar to that

of the truncated model.
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The model discussed in chapter 7 points out the possible importance of the in-

teraction between the convectively driven interior and the shallow stably stratified

atmosphere. In chapter 8 we discuss preliminary results of such coupling using the

anelastic GCM when driven by both convection and solar forcing. We show a possible

application for our anelastic model for the upcoming JUNO mission to Jupiter (2011)

which will measure the high order gravity moments. We follow on a suggestion by

Hubbard (1999) that precise measurements of the high order gravitational moments

can give information on the deep wind structure of the planet. We calculate the

gravitational moments resulting from the density field for different end-state velocity

profiles. In chapter 8 we conclude and summarize our results both from the pure

fluid mechanical aspect of the problem, and the application to the dynamics and

circulation on the giant planets.
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Chapter 2

A Deep Anelastic General Circulation

Model

2.1 Model Overview

We are interested in studying the dynamics of system where the fluid is not confined

to a spherical shell, is driven by internal convection and the density varies over several

orders of magnitude. Previous attempts to model this system fall into two general

categories: convection models with deep geometry that are limited to Boussinesq

dynamics (e.g. Zhang and Schubert, 1997; Aurnou and Olson, 2001; Christensen,

2002; Heimpel et al., 2005), or spherical shell atmospheric type models which lack or

parametrize the interior convection (e.g. Cho and Polvani., 1996; Lee, 2004; Lian et al.,

2006). The idea of forming such a model is two fold: one reason is to address in a new

way some of the questions presented in chapter 1 regarding the dynamics on the giant

planets. The second reason is to look at new aspects of fluid dynamics of a rotating

sphere in which the gravity and rotation vectors are not parallel. Such analysis has

never been attempted in a system which is non-Boussinesq, non-hydrostatic and has

a realistic equation of state which is dependent on the pressure variations. As we will

show in the next chapter this model also allows us to reach more turbulent regimes

than achieved in previous work.

A main complexity of this problem is that the system varies in more than four

orders of magnitude in density (from about a tenth the density of air at I bar to

a few times the density of water at, 10 Mbar), and therefore requires accounting for
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the compressibility of the gas. Typically this problem is overcome by using pressure

coordinates which allows us to use equivalent Boussinesq dynamics, with redefining

the vertical velocity, and still to account for the compressibility of the gas (Vallis,

2006). However since this is a convective system and we need to conserve all non-
hydrostatic components in the momentum equations, the use of pressure coordinates

brings additional difficulties. Therefore we have constructed the model in regular

depth coordinates, but use the anelastic approximation to account for the variations

in density. This approximation allows for the variations in mean density but neglects

the density anomalies in the mass equation. Although a natural starting point for

this model would seem to be an atmospheric model, the flexibility, the available non-

hydrostatic core, the reliability, and the available support at MIT led us to choose to

use the MITgcm.

2.2 The Anelastic System

The anelastic approximation was first introduced by Batchelor (1953) for a adiabat-

ically stratified horizontally uniform reference state. Then it was more rigorously
presented by Ogura and Phillips (1962) in order to filter sound waves in a non-

hydrostatic system. In essence, they perform a linearization around a specified adi-

abatic state 3 = so which defines a reference pressure p(r) and density 7(r). The

mass equation loses the a term (thereby eliminating the fast sound waves); Ogura

and Phillips showed that with suitable changes in other equations and using an ideal

gas, the anelastic system conserves energy. Durran (1989) showed a more general

solution which he called the pseudo-incompressible approximation, where he relaxes

the assumption that entropy anomalies are small compared to the reference adiabatic
state. In the pseudo-incompressible system density fluctuations which arise through

fluctuations in pressure are neglected, and density fluctuations from temperature are

figured into the mass balance. Durran's solution may be better applicable for systems
with large horizontal temperature variations, however in a convective system with a

large range of densities and pressures, one can not assume density fluctuations due

to pressure are small, while due to the convection the reference state may be close

to adiabatic. Both Ogura and Phillips and Durran assume the fluid is an ideal gas,
while for the interior of the giant planets the gas diverges significantly from an ideal

gas (section 2.3). We have extended the derivation for a general equation of state,
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and demonstrated that as long as the mean state is close to adiabatic the system will

conserve energy; this is shown in section 2.2.3. Taking the density and pressure to be

p - -(r)+p'(,O,r,t) (2.1)

p (r) + p'( 0, , t) (2.2)

defines a background hydrostatic state

- - .q(-), (2.3)
dr

where the gravitational acceleration g(r) is also a function of depth and is defined by

r_ G-3(r') ,

g(r) - T(r)dr. (2.1)

where G is the Cavendish constant. The density and pressure anomalies vary both

spatially and temporally. With the anelastic approximation the continuity equation

therefore takes the form

V. (u) = 0. (2.5)

where u is the 3D velocity vector. Throughout the thesis we will try and keep the

equations concise using vector form, but in this section, for completeness, we will
write the model equations in the full form. Given the spherical nature of the problem

we will use spherical coordinates, where 6 is the longitude, 0 is the latitude and r is
the radial coordinate. Therefore the velocity vector is defined in spherical coordinates

as

( Do5 DO Dr'
(u,v, ?v) r cosO-D-, Dt , " (26)

With p defined by (2.1) and with the divergence operator in spherical coordinates,

the mass equation (2.5) takes the form

-f u 0 1 0To OU, + -Pc a (v cos 0) + 1 a (P,r,2 ) = 0. (2.7)
rcos000 rcos0190
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2.2.1 The Anelastic Momentum Equations

The momentum equations for a rotating fluid when applying the anelastic approxi-

mation, thus assuming p' (0, 0, r, t) < - (r), in spherical coordinates become

Du-tanO- - + vV 2u (2.8)- + - - - tan 0 - 2Q sin Ov + 2Qt cos Ow =_+V2 28
Dt r r Pr cos 0 ao

Dv wv U2  1 Op'
+ + -tan 0 + 2Q sin Ou = + vV 2v (2.9)

Dt r r Pr o
Dw u2 + V2  lapf pI

- 2Q cos Ou -- -g + vV 2 v(2.10)Dt r Tf ar 7i

where -L is the material derivative,

D a u a vO 0

Dt + - - + -- + ra 7 (2.11)Dt at r cosO0 0 r0

Q = Q (r, 0) is the planet's rotation, v is a constant viscosity, and the Laplacian

operator is given by

1 02 1 a ) + a (r2aa
V ~ -+ - CosO j 0-(~~- (2.12)r 2cos2 OO02  r2 cos0090 o (0 r1r

We have made an approximation neglecting some of the terms when going from a

Laplacian of a vector to that of a scalar (Morse and Feshbach, 1953) in the viscosity

term. Similar to the Boussinesq approximation, the large hydrostatic mean terms

(2.3) can be removed from the vertical momentum equation so that the terms in

the momentum equations tend to be of the same order. Typically in oceanic and

atmospheric applications (Pedlosky, 1987), since the motion is confined to a thin

spherical shell, some of the metric terms in (2.8 - 2.10) can be neglected. However,

when studying the dynamics of a full sphere, where r varies considerably, these terms

are important. The Coriolis term associated with the vertical velocity and the Coriolis

term in the vertical equation are typically neglected as well. The first is neglected due

to the small aspect ratio between vertical lengths and horizontal lengths leading to

the vertical velocity scaling smaller than the horizontal velocity. Similarly, due to the

small aspect ratio the vertical momentum equation to the first order is hydrostatic

(beyond the hydrostatic basic state) and the Coriolis term typically may be neglected.

We emphasize that we do not make any of these approximations, and the importance
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of these typically neglected terms is discussed further in chapter 4. In the deep

sphere much of the intuition such as the vertical balance being close to hydrostatic,

or the similar scaling of zonal and meridional motions does not hold. In fact, as

we will show, in this problem there is a closer connection between the vertical and

meridional velocities, than between horizontal ones.

2.2.1.1 The Anelastic Equations for an Ideal Gas

A main difference between the anelastic system and the Boussinesq one is that, since

the background density is not taken as a constant, a more natural variable for the

buoyancY is the entropy. We begin by discussing this for an ideal gas, following Ogura

and Phillips (1962), and then show the buoyancy expression for a general equation

of state. For an ideal gas we can express the entropy as a function of pressure and

density s = s (p. p) so that

s=C,logO = CplogT-Rlogp=Cj,logp-Cplogp (2.13)

where C, and C,, are the specific heat at constant pressure and volume for an ideal

gas, and R is the ideal gas constant. Considering a variation s' from the mean state

s we can express the buoyancy teri in (2.10) in terms of densitY and pressure using

(2.13) so that

P p 1 f "s 1 pI s'
-- / _ 1) (2.11)

T) P 2P C )

where is the ratio ( Similarlv we can do the same for the mean density gradient

so that

1 d -p 1 dp 1 ds .qpf I d,
-d7 -dj - d - - p - (2.15)

T) dr idr Cp dr Cj, dr'

where the approximation has been to the same level as the approximation done for the

momentum equations in (2.8 - 2.10). Then the vertical momentum equation (2.10)
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using (2.14, 2.15) can be written as

Dw +  McosOu (p' + p' + - s q [ 1 g  _ s (2.16)
Dt Or T~ IY L ;P rJ - CPA

0o("\p' d qs'
- (p) + p dr + Cp' (2.17)

so that the buoyancy term in the vertical momentum equation is expressed in terms

of the entropy only. For a basic state which is adiabatic, this system is analogous

to the Boussinesq system, with the pressure term including the variation in mean

density, and entropy instead of density in the expression for buoyancy.

2.2.1.2 The Anelastic Equations for a General Equation of State

We would like to extend this to a general equation of state. Since our system diverges
from an ideal gas in the interior (section 2.3), this will allow us to apply the anelastic

equations to the deep interior of the planet. We assume a general equation of state,

and define entropy in the general form s s (p, p). We use the following definitions

Cp=T as(Os , =-T (Os (2.18)

a =-- W , =- ,(2.19)

for the specific heats (at constant pressure and volume), the isobaric expansion co-

efficient and the isothermal compressibility per unit mass. This allows us to express

the small entropy variation from a mean state as

' =( O + as +) --COP TP . (2.20)
" 4P) p (5P Ta Ta

Applying the same for the mean state entropy and keeping this derivation general,

thus allowing the mean entropy to vary radially, gives

-aT-p d-s + G0 (2.21)
dr Cp dr Cp
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Then the vertical momentum equation can be written as

Di a(p/ p aTp d-S C"62 Ps' 011
D + 2QoO =' -_ - -_+ - _a__

Dt +O2rcs9u =- -P [ Cp dr Cp 5 [CP C

- 9 (Cp dr P (2.22)

Therefore, the buoyancy is expressed by two terms. One involves the mean state

entropy gradient and the pressure variations, and a second term has only the entropy

perturbations. This shows that a natural reference system, analogous to one of a con-

stant background density in the Boussinesq system, would be an adiabatic reference

state so that ! = 0. In that case
dr-

Du' 0 qoT,
Dt + 2QcosO - (D ) + o,T' (2.23)

where 4 = is the anelastic potential. In the case of an ideal gas (2.22) reduces top

(2.17). We can gain more intuition for the buoyancy term by noting that

'4 ) (T) Tv T4 (2.24)asOp O: C, C1,

where we have used the basic hydrostatic state (2.3), and the Maxwell identity

OT) , = _~ 1 & ( Op (2.25)

Then for the adiabatic case we (an write (2.22) as

Dtv, + 2QcosOu = -r (4)) - s'VT. (2.26)

Thus under the anelastic approximation, with an adiabatic background state, the

buoyancy term is given directly by the entropy variation and the background tem-

perature gradient. This result is the anelastic system used by Ingersoll and Pollard

(1982) who have used a Legendre transform to obtain this relation directly, thus using

the thermodynamic variables s, T instead of p, p which are typically used in geophys-

ical fluid applications (which we will keep because of using the MITgcm). We have

shown therefore that the anelastic approximation expressed in terms of entropy is
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not limited to an ideal gas, and if assuming an adiabatic reference state it takes the

simple form (2.26).

2.2.2 The Anelastic Thermodynamic Equation

An advantage of this form is that it allows a direct connection to the thermodynamic

equation, which in the most complete form for a general equation of state is written

in terms of entropy so that

Ds QD- + V-(rVs) - Q (2.27)
DtV

where Q is the heating rate per unit mass, and r, is the diffusivity which we will

assume to be constant. Then applying the anelastic approximation, and assuming

a basic state which is adiabatic (constant - see section 2.2.3), we can write the

thermodynamic equation as

198, 1 Q
+ i:V.- (-pus') - rV's ' = (2.28)

The forcing is described in section 2.5. For this system to be consistent for a general

equation of state we need to show that the energy equation has a closed form.

2.2.3 Energetics of the Anelastic System with a General Equa-

tion of State

In the Boussinesq system an energy equation can be derived by scalar multiplying

the momentum equations with the velocity to form a kinetic energy equation. A

potential energy equation can be formed by multiplying a buoyancy term with the

thermodynamic equation. The evolution of the total energy can then be expressed

as an energy flux. Ingersoll (2005) shows in an oceanic context with the density

depending on three thermodynamic variables (pressure, temperature and salinity),

the equations will still be energetically consistent. For the anelastic case Ogura and
Phillips (1962) show that for an ideal gas a similar relation can be formed. We begin

therefore from the momentum equation with the buoyancy in the vertical equation

expressed in terms entropy (2.22)
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Du +2Qxu = -V (n') QTP' - s'VT, (2.29)

where u is the full 3D velocity. We define buoyancy and an anelastic potential as

b-=-2T s' (2.30)
CP

p'= -- (2.31)
T)

Scalar multiplying (2.29) with Tu and using the anelastic mass equation (2.5) gives

a( 2~ ~ [PU ±+~~ (- U2 o Tp',t d-s
y [Pk pu-V ] (2.32)- - u + -7  p + -1 + Ts' T= -u TV7s' - (2.32

Ot ( )2Cp, dr'

If the background state is adiabatic, so that the second term on the right hand side

vanishes, we can use the thermodynamic equation (taking only conservative terms)

to replace the right hand side of (2.32). Multiplying the thermodynamic equation

(2.28) bY 7T gives

-Os' -

=T- = TV . (pus') = 7ju . TVs' (2.33)

where we have used the anelastic mass equation again. Then the energy equation can

be written as

[ - + (D- 0Ts (2.34)

Therefore for an adiabatic background state there is no requirement to use a specific

equation of state for the anelastic equation to be energetically consistent.

2.3 The Equation of State

On Jupiter and Saturn the gas is primarily composed of hydrogen and helium with

small amounts of heavier elements. At low temperatures and pressures in the outer

regions of the planet, hydrogen is a molecular gas and the equation of state (EOS) ma.N

be approximated as an ideal gas. Deeper into the interior, however, due to the high
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densities and relatively low temperatures (compared to stars), the giant planets lie

in an extremely complex thermodynamic regime. The main factors that separate the

gas under these conditions from ideal gas behavior are pressure ionization, electron

degeneracy, and Coulomb interactions (Guillot, 2005). We use an EOS calculated

by Saumon et al. (1995) specifically for high pressure hydrogen and helium mixtures

including these thermodynamic complexities. In addition this EOS has been partly

calibrated with high pressure and density experimental data.

Below we review the physics governing this equation of state, estimating the effect

of these phenomena on the pressure, given the density and temperature. Although this

thesis focuses on the fluid dynamics we have devoted significant time to understanding

the thermodynamics and estimating their importance on the equation of state and the

reference state of the model. Eventually this boils down to a choice of an equation of

state and the reference state discussed in section 2.4, but this choice was not obvious

at start. In section 8.2.2 we estimate the gravitational moments of Jupiter using our

model, which are a measurable quantity in the JUNO mission. These results may

give further constraints on future equations of state.

2.3.1 Electron Degeneracy

For stars with mass over 0.3 solar, the typical densities and temperatures imply that

the electrons will always behave with near Maxwellian distribution of the momen-

tum. However, the Giant planets lie in a regime where due to the low mass, the

temperatures are relatively cool, while the densities are high, and therefore the Pauli

exclusion principle yields a distribution which is determined by Fermi-Dirac statistics.

The number of electrons in a volume dV and with the momentum [p, p+ dp] according

to the Boltzmann distribution function is

4n , 7p 2  2-kT
f (p) dpdV - 3 e2 ) kT)dpdV, (2.35)

(27rmekT) 2

where k is the Boltzmann coefficient, T is the temperature, n, is the number density

of the electrons and me is the electron mass. Then for a constant n, the maximum of

the distribution function Pmax = N2mkT tends to smaller values of p as temperature

becomes smaller, and f (p) becomes higher (since ne is given by f f (p) dp). However,

since electrons are fermions, for which Pauli's exclusion principle holds, each quantum
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cell of volume dp,dpydp.dV = h3 , where h is the Plank constant, cannot contain more

than two electrons. The Pauli's exclusion principle therefore demands that

f (p) dpdV < 8rp dpd (236)

and therefore giving an upper bound for f (p). Figure 2.1 shows the Boltzmann distri-

btion for different temperatures and the limit from the exclusion principle for both

typical stellar values, and planetary interior values typical to Jupiter. It shows how

due to the low temperatures the exclusion principle is a much stronger restriction for

planetary values than for stellar ones, requiring the electrons to occupy much higher
energy levels. Therefore the equation of state needs to include quantum mechanical
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Figure 2.1: The Boltzmann distribution and Pauli's exclusion principle for both plan-
etarY and stellar values.

effects if the temperature is too low or the density is too high. Due to the relatively

low temperatures in Giant planet interiors this happens relatively close to the exterior

(Figure 2.3). These electrons are referred to as degenerate. The transition to a fully

degenerate state is not a sharp one (for a finite temperature). The most probable

occupation of the phase cells of the shell [p, p + dp] in momentum space is determined

by Fermi-Dirac statistics, where
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87rp2 dpdV7 1
fh 3  1 + eE/kT' (2.37)

where E = P' is the energy in the non-relativistic case, and O is defined as the

degeneracy parameter. Then

8e [7r p2 dp 87r (27rmekT)3
h3 =- 1 + eE/kT-V a (), (2.38)

with

77 /2 d7
a(g) f)c e (2.39)

where we have defined q = p (2mekT)-2. Therefore the degeneracy parameter is a

function of n,T - 3/2 only. The limit of large negative values of 0 represents the limit
of high temperatures with a classic Boltzmann distribution. In the limit of large
positive i, when introducing an energy so that g- = -, then for large enough g there• kT

is a discontinuity in the distribution function at energy E0. This corresponds to the
limit of very low temperatures where there is a discontinuity at the Fermi energy.

i

For intermediate values using m,dE = pdp and p = (2m,E)2 the number density

becomes

47r 3
n. = h3 (2m,T)2 F 11 2 (PIi), (2.40)

where

F. (T) = j vd2 (2.41)S1 + e( -O)

is the Fermi-Dirac function. The electron pressure is

87r
P = 3h 3 (2m,kT)2 kTF312 (P). (2.42)

Therefore for a given density and temperature, by inverting (2.38) (the Fermi-Dirac

integrals have a unique inverse function), the electron pressure P, can be determined.
In Figure 2.2 we show the pressure of the electrons due to degeneracy as function of
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tempileratunre and denisit Y. Snuperimiposed is tle reference state For -11upiter. It sho{ ws

tiat .Jup1 iter lies in the region where degeneracy is implort.ant . where the dlensity has

a stronger effect. than tempiJeratuire oil p)ressure. Figure '2.2 shows that for J1upiter

the( effect of elect ron pressure is imiportant aIi(1. over miost of' thle dlomint is miore

iport it timint the p)ressuire of the atomls themselves appIroxillnatedl by tHie idleal gas

log P, [barl P.p,+P.)
4

6 .08

2-
4 06

a 04

0 0

02
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Figure 2.2: The effect of electron pressire onl the equation of staite. left: The pressure
P, of' tHie electrions as flinct ion of t emiperatutre and( doensitY. The lack linte is the
profile [*()r Jiupiter froni Guillot and( M orel ( 1993). right: TI'he relative contrib)ut ion of
electron pressure to thle total pressure of an ideal gas of Hyldrogen.

2.3.2 Pressure Ionization

Thie ioiziwa onl level of anl atoin is dletermniied lbY its templeratutre and( pressuire. Thlis

is uisually given by thle Salia relation (Kippenliahin andl Weigert. 1990) which holds

for high templeratures ini the interiors of stars. However, in Jupiter*s interior most of

he ionlizaltionl i's dile solelyv to pressutre. This is called pressure lonizat ion andI cant be

ap)proximlated roughlY bY the fact, tHat anl atoini must, be Ionized if the mattrer is so

(denise Otla t he (distallce between atomis is smaller thani twice the Bolir radiuis. InI this

caise eveni anl electron in the lowest. possible orbit will not, be bound1(. The condition

for p~ressuire ionizationi could lbe appIroximiated1 as

(43 < 2ao. (2.43)
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where d is the distance between atoms. nH is the numl)er density, and a() is the

Bohr number. For hydrogen this leads to an ionization density of 348 which

corresponds approximately to 0.92 of the radius of Jupiter and 0.8 for Saturn (Figure

2.3). Therefore we can expect the deep interior to be completely ionized. Even in

the regions exterior to the radius of full ionization, the ionization level will still be

heavily influenced by pressure ionization. In the exterior, where pressure ionization

is negligible, calculations from the Salia relation show that temperatures are too low

to cause significant thermal ionization. To estimate the pressure therefore one needs

to take into account the pressure both from the ions and the electrons. An order of

magnitude estimate is that ions and electrons have similar contri)utions to the total

pressure (Guillot, 2005).

Thus most of the interior is composed of heavily ionized dense plasmna, often

referred to as liquid metallic hydrogen. The physics of the phase transition between

molecular fluid to the metallic fluid caused by the pressure ionization remain poorly

understood. There have been attempts to calculate an equation of state for this

phase transitional regime (Saumnon et al., 1995) however recent results by the authors

themselves suggests that their previous results were not accurate. Therefore in the

equation of state we will use we include the effect of pressure ionization, but ignore

any variations in the equation of state from processes involved in the phase transition

itself.

2.3.3 Coulomb Interactions

Another important quantity that has amn effect on the equation of state is the coupling

parameter, which is the ratio of the Coulomb) potential to the thermal energy. This

measures how strong are the coulomb interactions relative to the thermal energy as

the density changes in the planet's interior. The coul)ling parameter for hydrogen is

given by

e C (4< jr pi (2.44)

where d is the mean distance between nuclei, and e is tile electron charge (Guillot,

2005). As F increases due to either an1 increase in density or a decrease in temperature

Coulomb forces become stronger. Hubbard (1968) has shown that Jupiter's interior is
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not e'xpe(ct ed to crystallIize ( happens lhO F > 180). andl shouldI be( hot enough s(o thilt

the interior will remain a fluid. Saturn's interior is also expected to remain a fluid.

TY pical values for- the interior canl be seen in Figure 2.3. and the sYstem Is (domlinatedl

bYthe relpulsive Coomb)ianl potenltial lbetweenl nuclei.

2.3.4 The SCVH Equation of State

In surnmarv a, large fr-action of' the interior is composed of* met al lic hyd rogen. In this

region elect ron degeiieracv, pesi ozation. and( Coulomb interact ions h ave sig -

i ant. contributions to thle pressure. Out side of this region hYdrogen is a miolecithar

gas, and( to a goodl approximnat ion is close to anl idleal gas. In thle interior th prcl)lsslire

(ca1 be exIpressed in the following forin (Stevenson. 1991)

wvhere P, is the cont.ribuition from the degenerate elect ron gas. PM, is the cont rihbution

From thle ionls. P(),lj is a 11Cegat ive teri (hlue to tile Con lombl iani inuterac tions of miuclei.

ando P, is a negative termn due to electron-electron rep)ulsion b)ecause of the exchi-

s1lon principle. Exact calculat ions of these effects are complex and involve fuirt her

app)roximiat ions that mntil recent ly have b)eenl untested in the applrop)riat e rep__ilnes of'

tvinp)eratuire and p)ressu1re. Several recent exp)erimlents oil hydrogen (Collins et ald.

1998: Knudlson et al., 2001) now provide data in regimes of interests for giant planets

and( (-all p)rovidle const raint s onl t lie equiat loll of'st ate. Saunion et al. (1995) have calcu-

latedl ani appTroximrate equation of state (referred to as SCVH ), for bo0th hydrogen m1i(

helium taking into account. all these effects and extrapolating between the difFerent

regillecs.

In Figure 2.3 we compare between the SCVH eqluation of state for hYdrogen (blue).

and anl ideal gas (dashed red). To get a feel for rough estiniates of thle p)hYsics (diverging

lie equation of state from anl idleal gas, wve show the limits for the phenlomlenlon

dlisctussed1 inl this section. The green lines show the thermal andl pressure ionization

limits (2.43). the pumrple curve shows the electron (degelieracY limiit (2.12). and lhe

magenta, curves show the Coulomb limits (2.44) for (different values of r. It is clear

that I)evO%,m1l( 1()4 bars (2(/( of' the p)lanletary radius) all these effects become implJortanmt

aii(l inideed b)evon(d t Iiis regioni thle SCVH EQS diverges from an ideal gas. In the low

teniperature and densitx limit the SCVH EOS is similar to an ideal gas. while f*or
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Figure 2.3: Isobars of the hydrogen SCVH EOS and an ideal gas in log p - log T
space, black: the profile for Jupiter from Guillot and Morel (1995); red: tile adiabat
of the SCVH EOS that matches the Galileo observation; purple: the limit where
pressure from the electron gas becomes significant (2.42); dashed green: the limit of
pressure ionization (2.43); green: the limit of ionization from the Sahia relation; pink:
where Coulomb interactions are significant with F = 10 (2.44); dashed magenta: the
Coulomb limit with F = 1.

high pressures it differs significantly.

In comparison with hydrogen, the EOS of helium under the conditions of interest

for the giant planets has been less studied. Experimental data for helium is only

available up to 0.56 Mbar (Nellis et al.., 1984). A major complication (Salpeter, 1973)

is that hydrogen and helium mixtures can undergo a phase separation where the

heavier helium will form droplets that will fall towards central regions of the planets.

Nonetheless, Saumon et al. (1995) have computed an EOS for helium, though it has

not been compared against experimental data. This should not affect the results too

much since for giant planet composition mixtures, hydrogen represents about 90%

of the atoms, and helium about 10%. The consequent EOS for hydrogen-helium

mixtures is then calculated using the additive volume rule such that

p (1 - Y)pH 1 + Y P- (2.46)

where Y is the helium mass fraction. Then the coefficients in (2.20) can be calculated

based on this rule. This method implicitly neglects any interactions between hydrogen

and helium.
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Giveii thlat b iW singi the SCV H e(Ilatioll of' state for livNdrogen. we are alr-eadYV

making a big step lbeyond the Boussinesq and ideal gas mnodels. we will lot add( at

his stage the complexities and( uncertainties of the hydrogen-lieliumi miixtures. Using

lihe hiYdrogeii SC VH equlationi of state shiouldl be sufficienit for thle level of'comiplexitY of

our miodiel. For exanlple. thle idleal gas conist ant for giant p)Iariet comnposit ion mixt ures

(which is relevant for the outer regions - Figure 2.3)1 wviii change bY less than 10V

wheni comlparinig it to thle idleal gas cons5tant of'oiiiy hydlrogeni. Thei iuncertainity in thle

other parameters of our miodlel w\ill 1)e probablly larger than the discrepancY b)etweeni

heli equoat ion of statc (Nv ith aiid wvithiout the hl'ill comp 1onient (see sectioni 6.3) . Inm

additioii. we will not account for the variations in the hyvdrog-en EOS at th(e hydrogen

phase transit ion that. occurs b)etweeni thle molecular and metallic fluid. 'Ihle( equat ion

of state for t his phase tranisition has beeni p)ublished withI the originial SCVH papenr.

1)u1t the auithors have recent ly reported anl error in thia calciihitioii.

2.4 The Reference State

As5 discussed ill sectioni 2 .2..3. using all adiabatic reference stmte implies that the

aiielastic sYstell is cencrget icallY consistent. We have shown that this (does not limiit

lie Foriim of t he eqluat ion of' state aniid. for a convective dIrivenm iiiterior. is thleref ore ai

reasoniale app)roximationi. I'lie GailmC entry p)robe has foiunid thle aniiosp)liere to be

close to a dIrY adlabat b)eYond( the I bar level (Seiff et al., 1997). We fimid thlat, when

tAinmg timis value ofenitrmopY Fromm thle Galileo p)rob)e ini isuireimieiit. ain( using it ats (he10

adliabat, with th le SC VH EOS. the adliabatic p)rofile matchdes well previous est imates'

of the iiiterior niieaiilIIstvtInertieIrsmr profile ( Guillot amid M orel. 1995).

WXe therefore use this "Galileo adiabia. as our referenice state for thle miodel. The

dletails of understanding of' the interior (depend onl variations in the adiabacitY of the

fliit~ s suiggestedl bY Guillot ct al. (199 1). However, for t lie level of sophmist icat lon of'

t his flid dlvnamiical model, we feel this constant entropy b)asic state will suffice. 'I'lie

v,ariation from this reference eut ropY is computed dYnianhilcallY.

lime ve'rt icil gri(d is chmoseii So that gri(d spacinig follows a coiistmit iiaii pressure

ratio b)etwxeeni levels. Relating each pressure level to its vertical dlepth is set following

calculationis of Guillot anid Morel (1995), amnd Guillot et. al. (2004). Once the( coiistamit

enmt ropv (-s), amid the iyieani referenice pressure for every vertic~al grid point are set. the

refereiice temperature and densitY cani be found from the SCN'll EOS. Integratiing the



reference density allows calculating the gravitational acceleration for the vertical grid

(2.4). Figure 2.4 shows these reference fields as a function of depth. In fact for the

dynamics only P(r) and g(r) come in, where the T(r) is used only in the calculation

of the forcing profile (section 2.5). For every layer separately we then fit a polynomial

to the SCVH EOS for the variation in density so that

Reference Density Reference Temperature

101 10 3

0.1 102

Reference Pressure Gravitational Acceleration
.... 25

ml

100 110
0.6 0.8 1 0.6 0.8 1

r/R r/R

Figure 2.4: The adiabatic reference state of the model. Plots of density, temperature.,
pressure (logarithmic axis), and gravitational acceleration as a function of depth.

p (S, p) = + ap + Q )p, (2.47)

where the derivatives are calculated from the SCVH polynomial for each reference

pressure (see Appendix A), and s' and p' come dynamically from the model. This
variation in density feeds back to the model dynamics. Thus we have a fully coupled

fluid dynaiiic-thermodynamic system. To the best of our knowledge this is the first

time such an elaborate EOS has been incorporated to a dynamical gas-giant model.

We feel the modification of the density pressure temperature entropy relationship

will be a considerable improvement to the existing dynamical models, and will give a

much better representation of the planet's interior and its interactions with the outer

atmosphere. As discussed in chapter 1 since the gas is largely ionized in the deel)

interior the magneto-hydrodynamic contributions which we do not include may be

significant as well.
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Th rltionlsip is sliowin ini Figiirv 2.5. where it

can be seeni that iiJ) to about 1 Mbar (0.9 the raditus of the planet) the SCTH E(OS

15 (lose to an ideal gas, but it differs sub)stant iallY~ for lie (leep interior.

4-
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Figure 2.: Coiitours of p)ressure inl log/) logT Space for thle SCVII E'OS (blule) and anl
ideal gas ( magenta) . The adiabatic reference state (black) is (lose to the calcuilat ions
red) of Guiillot. and M orel (1995): GuilIlot (t al . (20041). 'I'le imo(lel uises a dIifFvrent

polYnmiial for each la.ver (greeni) to calculate the (l.viiamiical densit.y (2.47).

2.5 Forcing

The fact. thIiat .J upIiter viliits iliorc clici-gx t hanl it receives froll thle sul impiil)ies thI t

int ernal lieat, is t ranisport ed from the planet's interior to space. 'Ihe( struch ire of the

dYniamiics is related to the miechiaiiismis tranisporting the Ieat. lit stars hecat is oftenm

rnsported by radiat ion and coinduictioni. Onl Jupiter it is estimated that convection

rather thail coiiduction is inl effect. what is trarsport ing hevat. (Guillot et al.. 2004).

The forcing as applied to die io(del assumen(s the vert ical p)rofile is close to adliabat ic

and that the planlet is cooling oin long time scales. Suppose wve allow for s to vary onl

long t jine( scales so that its variation rep)resenits the long tiiiie Cooling of' theo planiet.

Weasslitte liat transport of heat is d ifflsive So thle heatiiig has tdie foril

Q = C'IfV 2T. (2.48)
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Over the long non adiabatic time scales the forcing is given by

D:q 07 C,,tcV2TD- - - , (2.49)Dt Ot T

The vertical profile of the heating rate (2.49) is shown in Figure 2.6. We constrain

the heating so that, when integrated over the whole volume, the total forcing will

be zero. and thus no net heat is added (or lost) from the system at every time step.

Therefore we shift the conduction profile (2.49) so that the net heating is zero, and

the difference is the heating associated with the long time scale cooling. Then the

actual long time scale cooling is given by

0-s/V 2 TC = h, 2,T) (2.50)

where we denoted the difference between the original profile (2.49) and the shifted

vertical heating profile by () . This is the representation of the long time cooling of the

planet, and this term represents the net loss of energy which is seeni in observations.

Then the thermodynamic equation (2.28) including the explicit forcing becomes

T- u-'-V. -(Pus'' - CK T . (2.51)

The heat flux (F) is related to the heating rate by = V F. Hence, we can

calculate the effective flux at each depth from the heating by

F I -r, dr + F. (2.52)
1,2 jT

where F is zero since the flux at the bottom is zero. The normalized heating rate

and heat flux are shown in Figure 2.6. Note that the flux out of the atmosphere is

effectively zero. which is different from Rayleigh-Benard type convection models (e.g.

Heimpel et al., 2005) that have very high outgoing heat fluxes. The interior heat

fluxes are very large but compensate for the use of eddy viscosity terms which are big

due to the size of the grid. We discuss this issue more in section 4.7.

60



079-

09-

0055

08 01 0 . 04 05 06 7 06 0

Figure~~~~~~~~ 2.:T 75 1 dla.n nuto rd)adtersiIigba lx(lc)a

Figrei12a.6:is The iias heqating inctins (orre sbiit ofd the mtn ean fleuxsitlvcwhiah

bat filctioi depil. Bifhii ore nraized (te equatio ofe stvaten, for tevatiso thn

tlenwp. inles 1)0.1 ofctve *ycoon and th bouttionsi and hetn) veTll inegredIl

2.6b Moe Suemary

The loelsvs he ien sphericallnioiti ofqsat n ith oniso sphseicalo sixel ap-
triOnia(.8t2..n1. 2.. 2.28. eqaind co.4a)s ceor tessixit ofkthewnican en s' ity NvIl

p'. 'I'he gravitational acceleration g(r) is calculated fron the irean dlensitY. These
equat ions have thle p)araincters Q., v. t; andl Q. These paramiet ers are set bY t(hrec

nonidiniienisioial Inmbe(rs which control the systemn: the Prandtl (viscosity vs. corl

dunctivit v), Tavlor (rotation vs. viscous daunping) and Rayleigh numbiers (I.iovanic%

vs. viscous and thernmal dlanilping). These numbers are given bN

Ta Ra~. (2.53)
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where H is the total vertical extent of the model, and B 0 is given by

B ( 0 (2.54)

where the subscript 0 denotes the top level. The heating therefore is normalized by

the reference entropy value -, and thus reduces the system dependence on the specific

choice of the value of s (although this choice still sets the other reference values).

B0 will therefore be the equivalent of the Brunt-Vaisala frequency in a stratified

fluid. To keel) the parameter range simple and since the grid spacing is fairly uniform

(aka horizontal scales are similar to vertical scales), we use the same viscosity and

diffusivity parameters in all the equations. Often in the text we will use the Ekman

number ElA: = instead of the Taylor number. Other model settings, which we

experiment with are the total vertical depth (ranging from a thin spherical shell to

93% of the planet radius - section 6.1), and the rotation rate. Since we consider

several forms of thermal forcing, we may have more than one Rayleigh-like number,

e.g.., one measuring the horizontal variation in heating in the top layers.
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Chapter 3

Numerical Results

3.1 Axisymi-etric Results

When we ob)serve the circulation o11 the giant, planiets it appears to first ordler fairlY

zonally synitnetric. Fro1m a miodeling point of' view the quiest.ioni is call anl axisyni-

inietrlic 11mo( de cap1 ture the ina i tum (AWo thIiis (ir cution 11 suchi as thle eYInat(wial

sulperrotat ion. alternating jets aI( p)olem-ard het. transport? Froi our exp)erim-lc

wiT i liu atmosphere wve know that zonally syninietric miodels had success inl (x-

plinin g wnwii of thle featuiires of tile general circukhaim (e.g. Held awld Hou, 1980). but

eddyl\ fluxes are crucial in u1nderstand(ing the getteral circulaton (Schineider, 2006).

In this section wve present results of axisqinetric calculations. We use the rull

31) tt"xh)ll 1 it tlciat e it to one gdd( poihut in t he zona] odirect ion. NSA(1 of thle nuioue

dlevelopmnilt was ([o1w in the axisynnetric setuip. which is simpller comtput ationally

anid still cointaiiis the vertical niodhifications that were inadc to the MlITgcin. Whlen

comparing to the 3D results wve find that the cirulatihn is qnite dif-ferent. Nevertheless

comparing the 2D) to the 3D1 results illuminates the role of the zonal asyilmnetries.

particularly the roe of the eddies in (Irivinig thle equatorial superroatkMoL Sonmc

aspects of the cirmulation do carry over from the 21) to the 3D niodel and wve focus

onl those inl the first s~ubsections5. We will begin by discussinig the efFect, of rotation

oni the cirn-Wati aild then discuss the oiset of coNvetion amid thle critia Rayleigh

nlumiber.
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3.1.1 The Effect of Rotation on Convective Plumes

In a non rotating system tile intuition about convecting plumes is simple, and con-

vection is associated with fluid motion along the direction of the gTavity vector. In

a rotating system the Taylor-Proudman theorem puts constraints on tile dynamics,

where now two key players in determining the direction of motion of a convecting

plume, will be the direction of the rotation and gravity vectors.

In many geophysical models due to the traditional small aspect ratio approxima-

tion the horizontal component of the rotation vector is neglected. However even for

deep oceanic convection the aspect ratio within the convection columns may be near

unity (Lilly et al., 1999; Marshall and Schott, 1999). Then the vertical velocities are

comparable to horizontal ones so that this approximation is not valid. In the case of

a deep convective atmosphere this is not valid as well. The traditional approximation

treats the rotation and gravitation vectors as )arallel; the issue of convection when

they are riot has been addressed in several studies. Numerical experiments by several

authors (e.g. Zhang and Schubert, 1997) have shown alignment of convective flow

with the rotation axis. This issue is not simple to treat in laboratory experiments

because tile difficulty of creating a finite angle between the rotation and gravity vec-

tors, and the need of having tile center of gravity not coinciding with the center of the

Earth. However as suggested by Busse et al. (1998) the angle between the buoyancy

force and the rotation axis can be produced by the use of centrifugal force. Sheremet

(2004) used this method and found out that oceanic type sinking plunes tend to

sink in an intermediate direction between the effective gravity and the rotation and

shift eastward. In a space lab experiment Hart (1985) used a spherically symmetric

electric field acting on a dialectrically insulating liquid to simulate gravity in space.,

and address the issue of the direction of the plumes in a rotating system.

In this section we show results from tile axisymmetric model showing the effect

of rotation on the convectively driven flow. Simplifying the imodel further, in this

section we use Boussinesq dynamics. In section 4.5 we discuss the effect of rotation

on the anelastic model and show tie 3D case, but the essence is captured by tile

axisvmmetric Boussinesq model. This analysis in 2D is simpler also because we can

define a 2D streamfunction, which will describe the motion in the radial-meridional

plane. In the 3D case we can do this only in cases where rotation limits the motion

to be 2D. Without assuming a small Rossby number we can write the steady state
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Figure 3.1: The meridional streallifulctiorl for axisvilmetric wxperilllents with differ

ent rotation periods.

vorticitY equation (Pedloskv, 1987) as

2Q -Vu + [w- .Vu + V. (wu)] v p' X ! (3.1)
Po

where w = V x u is the vorticity vector, u is the 3D velocity vector and P0 is ihe

collstalt density. If tile flow were conpletelv barotropic then for sinall RossbY ini-

bers (or rapid enough rotation). (3.1) woulh he dominated by the first term. The

Tavlor-Proudiian theorem then implies that the velocity is constant along the direc-

tion of' the rotation axis. However. since the colvection dIives plumIes with horizoital

gradients the flow is not completely barotropic. For slow rotation the vorticitv flux

and tilting will l)alance the baroclinic vorticity prodluction term. For cases of weak

enough convection we find that though locally the Brint-Vaisala frequency can vanish

(in the plnlies), on average over the domain it has a positive (sniall) value. Therefore

the two physical time scales in the problem, the rotation period. and the buoYaicY

period, set the character of the flow. For large R- the flow will be doninated lbv the

rotation, and the plumes will align with the axis of rotation giving nearly constant
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Figure 3.2: The ratio il (blue), and the maximum value of the streamfunction (red)
TN 2

as function of the rotation period for axisnymmetric runs.

velocities along this axis. When f 2 is small the buovancv dominates the rotation
N

2

and the plumes align in the direction of the gravity vector. Figure 3.1 shows the

2D radial-latitudinal streamnfunction for axisymmetric cases with different rotation

period. The flow develops circulation cells that change their character based on the

ratio of - . Figure 3.2 shows this ratio as a function of the rotation period for a series
of runs varying only in rotation period. For strongly convective flow the buoyancy

frequency will not be a good measure of convection. An equivalent measure of the

convection can be the ratio of the nondimnensional numbers

Ta. Pr 4Q2

R, - Bo' (3.2)

where B0 has been defined in (2.54). We show in section 4.5 for the 3D case that

this is a good measure to characterize the flow: thus when \ > 1 the flow is rotation

dominated and aligns with axis of rotation, and when x < 1 it is not. We discuss

this further in section 4.5. Figure 3.2 also shows the normalized intensity of the 2D

streamfunction.

The zonal velocity character is very different from the zonal velocity in the 3D
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case. Th is velocit,N stru1ctuire is shown in Figure 3.A whiere Nve comnpare the 21) to(

the :3D flow. The results shown in this section are for an Earth size aqua-plane't (a

dlevelopimtilal stage of t,his itodel) so numierical values can not1 be comipared bet ween

I his sect.ion ad t he rest. of, thel t hesis.

3.1.2 The Critical Rayleigh Number for a Rotating Fluid on

a Sphere

W\e studYv lhe ostof covcion in the rottin axisYminetric sYst ei. hsaani

a case where (he axis.viiint,ric results do not differ much from thli spherical ones. and

to Simify fthle analYsis We look at the Boussines(I case. W\e look at the onset thIIrough

a local linear stability analysis and compare the result t.o numerical axisynmmetric

reSult-s. The linear sYstemn in spherical geomtetrY is givenl bly

d it - 212 sin Ov + 2Q cos 0 it = IvV 2u (t3.3)

01 l - ) si t) O r = - + I ,V , 1 (3 14)

Ow 2Q cos Oil = I + b + IvV2 11 (3.5

roo oro

A +tl,S = 1'.V 2 (3. 7)ot
where b is the biiovaincv and the rest of the variables and parameters are,

dhefinled in 2.2. Wev assumne thlat. locallY wve can describ)e the pert urbat ion I)." the formn

[it. v. w. b.p =) [Uto. ro.(.boq)o. cu 40m t (3.8)

which allows writing t.his sYstemn as

-IuT - 2Q sin () 2Q cos 0 11(

21 sin) 0 1(7 0V0(Ip

-2Q cosO 0 VO In -O 3019)

0 ()S 1(7 K ()P
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where we have approximated the Laplacian operator by dropping first order deriva-

tives and denoted the total wavenunber a2 
= - (12 + r 2m 2). Solving this system for

a= 0 gives the critical value for instability. This critical value occurs at

=t (2Q cos 01+ 2t2 sin Or'm)
2  IaK(.

S 12 r 412  (3.10)

and gives an expression for the critical Rayleigh number

Rac 2 Qf.42 (I C O S 9 + rn sin )2 a'

R 1 2 +72. (3.11)

Therefore the critical Rayleigh inunber is composed of two terms. The first depends

on the rotation period, and the other purely on the wave numbers. In the limit

of slow rotation the solution is dominated by the second term implying that the

onset of convection does not depend on latitude. The solution in this limit is the

classical critical number for Rayleigh-Benard convection (e.g. Chandrasekhar, 1961)

for the case where the zonal wave number is zero. Busse (2002) studies the onset of

convection in an annulus and finds a similar structure to the critical Rayleigh number,

though with no latitudinal dependence due to the different geometry. In the limit of

rapid rotation if the first term (ominates then the onset of convection will depend on

latitude.

We can test this solution using the numerical model. To allow quantification of

the dependence of the onset of convection on latitude we use a simplified forcing.

Instead of forcing by the profile shown in Figure 2.6 we apply a heat flux to the

bottom boundary, which is relaxed by Newtonian cooling at the top. We assume the

latitudinal number of )lunies is related to the meridional wave number, and then can

plot the intensity of the I)lunes during the initial stages of convection as a function

of latitude. In Figure 3.3 we compare the outbreak of the convective plumes as a

function of latitude and compare that to the inverse of the critical function obtained

in (3.11). The bottom panel shows a qualitative match between the two profiles. The

intensity of the convection is stronger towards the poles where the critical Rayleigh

number is smaller. When we look at the spin-up of the model with more complicated

schemes of forcing we see also stronger initial convection at higher latitudes. We find
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Critical Ra # as a function of meridional wavenumber and latitude
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Figure 3.,3: 'Ihel( crit ical PaYleigh imt)er as fimcthon of' latinid(e. (bottomi) The c'01or

p)lot is the ilit.ellity of tlle coinvection at its oiset. for a c'ase where forcitig is appliedI
ats a bot to010 filix. 'I'lle dIashed(lime is the iverse of' the critical Ra *yleigh imbuuIer
(3.11). which matches the profile set h)'v the outbreak of comvectioni as a function of'
Ia t.imt te. (to)p) The crit ical Ra 'vleighimbnder as fumctioni of latitiide andl waiveiiiliber.

Tlie level I = 17 correspond to thle dlashed line inl thle b)ottoni paliel.

hirfiethat fo un a radiuls /.') whenl

143

he critical RaYleigh Inmber dcrieases withI latin ide.

3.2 From the 2D to the 3D Model

Duet( to t he iiatimril axisYmmiet ri c appearance of t hermally com-ectig rotatinig svstenis

in iiatwre, tbhev' have been iiiially stitidied for axisvrniietric cases. ChimidraseAhiar

(1961) showed that thermal c'onvection in a rotating fluid for high TaYlor numbers

will formi coinvectionl cells. Roberts (1968) was thle first to show t hat hinear' asYni-

met.ric itodes will be the most, unstable Ill a spherical shell wheni forced interniall,v bY

(,oliv,ct.ioli. III sev'eral stum(lies Bnssc stiggestedl t hat these miodles are related t.o thle Jets

seeni on the oiter plaiiets and may lead to eqtiatorial siiperrotatiori (e.g. 131sse. 1970.

2002). Eveni oii Eart his at.mosphere, althouigh a very dlifferent tYpo, of syvstem, thej(
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statistically averaged flow appears axisymnetric. However, the inechanisuis driving

this flow do depend on the zonal asymmetries (Schneider, 2006).

Comparing our axisynimetric simulations to the 3D ones we find that the zonal

asyminetries completely change the character of the circulation. The axisymnetric

model is composed of mainly up-down motion along the direction of the axis of rota-

tion with zonal velocities produced by divergences constrained by mass conservation

of this convective flow. For rapid enough rotation the Taylor-Proudinan theorem lim-

its the motion. As a simple example we can think of tile flow at the equator in the

axisvminetric and Boussinesq case. At the equator the direction of the axis of rotation

coincides with the latitudinal direction and therefore the Taylor-Proudman theorem

implies that the meridional velocity is independent of the latitudinal direction. Since

the velocity is non-divergent, then both derivatives independently become zero

1 O V 1 = 0. (3.13)

Then, since the boundary condition has no normal flow there call be no flow along tile

equatorial plane. Since the presence of convective plumes drives the flow away fron

a completely barotropic state., the Taylor-Proudman theorem does not completely

apply even for the Boussinesq case and therefore some cross-equatorial flow does

develop even in time axisymmetric model. However in tile case of forcing only lyy a

bottom boundary flux (as in section 3.1.2), we find there to be nearly no flow on the

equatorial plane. A similar arguinent will hold for the anelastic case even though the

mass divergence contains the mean density. It can be seen in Figure 3.1 that for both

cases the equatorial region is fairly quiescent. In the 3D case, having the extra degree

of freedom, the full 3D velocity divergence allows motion on the equatorial plane

both in the zonal and radial directions even if the Taylor-Proudman constraint is

fully applicable. In chapters 4-6 we discuss in detail the 3D solution, and in chapter 5
we show how this motion on the equatorial plane drives time equatorial superrotation.

In Figure 3.4 we show the Anelastic and Boussinesq cases in 2D and the equivalent

plots for the zonally symmetric flow in 3D. The left panels are the zonal velocity and

right panels are tihe mneridtional 2D streamfunction of time zonally averaged velocity.
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2D Anelastic 2D Boussinesq
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3D Anelastic 3D Boussinesq
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Figure 3.4: Coioparing 2D and 3D Boussines(I and anelastic models. Left panels are,
zonal velocity (with mis values in the colorbar). and right panels are the 2D (r - 0)
streanfi ctioni (zonally average(d fields for the 3D cases). 3D runs have parameters:
Ra = lET. E: = 1.5E - 4. Pr = 10., and 2D runs Ra 1E6. Ek = 4E - 4, Pr = 10
(anelastic.) and Ra = 3E6., Ek = 1.5E - 4. Pr = 10 (Boiussin esq).

71



3.3 The 3D model

In chapters 4-6 we discuss and analyze the 3D results. As a reference for the rest of this

work in this section we present a series of plots which will be tile baseline for future

discussion. To describe the 3D spherical statistical stead'y state of the model, we

present some of the basic fields in three orthogonal slices on the planet: a incridional

(pole-to-pole) slice of the zonal mean flow, an equatorial 360' slice around the planet

(for some runs we have done only 90)., and slices on constant mean pressure surfaces.

The meridional extent of these runs has been from latitude 80'N to 80'S. The

choice of not extending the model to the pole was based on numerical convenience

since the convergence of the grid at the pole will require more computation tune. In

addition we were more interested in the equatorial dynamics and therefore made this

choice. The depth of the fluid layer was chosen for these runs at 0.55 the ra(lius of the

planet, which corresponds to approximately to 20 Mbar. In chapter 2 we have shown

that beyond about 100 kbar the therniodYnamics become different than an ideal gas,

and therefore we are well into that regime. Most previous models of convection in

a deep shell put the bottom boundary at a higher level. However, it has not been

clear how munch that choice influences the results (in particular the extent of the

superrotation). One of the goals of this work is to study the dynamics of' a deep

system and therefore we deliberately push the bottom boundary deep even beyond

what is generally accepted. In section 6.1 we study the delendence of the dynamics

on the location of the bottom boundary using a series of runs ranging from a thin

spherical shell to a full 3D sphere. We use slip boundary conditions on the bottom

and side boundaries, and a free surface on top.

All runs we present here have a 1' resolution and a factor of 1.33 in pressure
between each vertical level, with a total of 120 vertical grid points, giving a total of

160 x 360 x 120 grid points. Because of the convection, the numerical time step is

small (5 seconds) and the runs typically require at least 5E5 time steps to reach a
statistical steady state, beginning with a zero mean flow initial condition and small

randoi noise. We run typically on 16 parallel processors and comlutation time for

such a configuration is about 6 weeks. We found that using only part of the sphere

(typically of the sphere zonally) with periodic longitudinal boundary conditions

does not affect the results much, and allows cutting computational time by a factor

of 4. Some of the runs we show therefore will be of a slice of a fourth of a sphere.
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Nlill o presen ta tioii purposes thlroughiout thIiis wvork we use, thle mlerid i onal mid(

Zonal components of the Vec'tor streartifiniction 'T to describe the flow oii a 2D slice.

Since the quantitY Tpu has zero dlivergence we can dlefine this streanifunction as

"'here 'P Is a 3D vect.or. InI component forin t his gives

1. K ( c os 0) 0-](31T

v [coso 03 al. I~) 3.
l [o (I-/) - 4,] T)u (3.17)

1D Ile toI0I Y1 I I Iv Iie tr id aong thle axis of' rotat ion. oni the equla I or' wve assul Ie tI Iw chlit II ges

a long th li xis of' rotati onl (whliicli coinicide wvithI the 0 (direct ion a long the vqu atorall

p)lanv) are smnall, and then canl neglect, t he terms coiitaining changes inI the 0 direct 10on

for thle equatorial planie. Then, we (-an integrat e ci ther (3.15) or- (3. 17) to find To0 . We

refer to t his meridiona.] comiponient as the equatorial streaininction . In Figure 3. 11

weO showv velocity vecto rs sup)erimpilosedl onl thle equatorial st.reanifunction shiowinig that

initegratinig from (eit her (3.1 5) or (3.17) is conisistenIt. As one( nioves awafy from thle

equnatorial p)lanie t his approximation becomes less accurate. For the 'P, coInipotent, we

find that sinice the inot ion is 3D. we cani not dlescrib)e 'P, as at 2D field. 'I'he zonal lY

averagedl values are p)resenitedl as the averaged inieridional streaniffinctiou 'ph,.

W'e showN inl this section results fromi two runs which have identical paramtiders

e'xcept. for the R a"vicigh niumiber. Our goal is to run the mio(del inii regi me whliichi is

as turbulent as the numerics wvill allow. and1 therefore have a Rayleigh nunmber which

is as high as we canl afford (also dep)ends onl gridl and( timne stepi). thlough it is harder

to identify the physical processes in those runs. Therefore in sectioni 5.1 wve studyl iin

detail af run wvith a low RaYleigh numiber which allows easier analysis of processes.

'Ihel runs wve p)resenit iii this sect ion have Ha. niumbiers of' 5E7 and 3UA which we

will refer to as the high andl moderate Rayleighi number runs resp)ectively. WVe beg-in
wvithi the high Rayxleighi numbler runl. and iin Figures 3.5. 3.6 3..adloItsie

onl surfaces of comnstamnt ine'an prssr (dept Il) which are rouglY at the top surface.

0.86, and 0.59 of the radius respectively ( 1bar., 1 Nlbar and 10 N-lbar). The fields are
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averaged over a period of 1 day. For each surface we look at the three components
of velocity. density anomaly, entropy anomaly. and vorticity (top surface) or pressure

anomaly (bottom two). Velocity fields show tile effect of the mean density with

smaller velocities in the interior and tile superrotation at the equator with a weaker

Hadlev cell in the meridional direction. The thermodynamic fields show how density

is strongly affected by pressure in the higher levels while becoming more dependent on

entropy in the lower levels. We discuss this issues in section 4.3.2. Figure 3.8 shows

the corresponding fields for the same high Rayleigh number run oil the equatorial

plane., including the equatorial 2D streainfunction (flow in tile r - 6 plane), showing
cyclonic eddies on the equatorial plane. The zonally averaged meridional slices are
similar to the moderate Rayleigh number runs (only with stronger velocities), and

therefore we show them for that run only.
For the moderate Rayleigh number runs we look both at the instantaneous fields,

and at the time averaged fields averaged over 12 days. Beginning with the install-

taneous fields (snapshots) in Figures 3.9, 3.10, 3.11 we show the zonally mean fields
on the meridional plane, the surface at 1 )ar, and the equatorial plane respectively.

Then we show the same slices for the lbar surface and the equatorial plane without

repeating the meridional plane that is quite similar to the instantaneous fields because
of the zonal mIean. In the following chapters we discuss the features of these runs in
more detail and discuss their dynamics. Figures 3.5 - 3.13 follow below.

74



U 
Ik

-500 0 500 -500 0 500 -1 0 1

-0.4 -0.2 0 0.2 -100 0 100 -0.5 0 0.5

Figuire 3.5: 1 bar surface fields ax-craged over I dlaY for a high P aYleigh nmb rier r-Iiii:

1Ra --- 31-1. Ek: x 1.05E - 4. Pr =10. upper left: zonal velocityir/Iupemdd:
meridional velocity Int/.91; upper right: vertical velocity I.s j; o per f.inidve

anomnaly IjKgm--;l; lower mIidd(le: converted entrop)y (see Appendix A) anoutalY I fI:
lower right.: vertical vorticity 10-:s-I.
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Figure 3.6: 1 Nibar surface fields (0.86 of the radius) averaged over 1 day for a high
Rayleigh number run: Ra = 5E7, Ek =1.5E - 4, Pr =10. upper left: zonal velocity
I rnsi; upper middle: myeridional velocity I mIsl; uipper right: vertical velocity I/I
lower left: density anomnaly jKg m-j; lower midldle: converted entrop)y anomaly IJxi;
lower right: pressure I kbarl.
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Figure 3.7: 10 Nlbar surfiace fields (0.59 of the radlius) averagedI over 1 dlay for a high
Rayleigh number run: Ra =3E7, Eki= 1.5E - 4. Pr =10. upper left: zonial velocitY

I II/sI; uipper middle: meridional velocity Im.1/si; upper right: vertical velocity I rn/si:
lower left.: denisity anoi()IalY I KgJ in "I. lower middle: coniverted entropY aioioal, I KI:
lower right: pressure Ikbarl.
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Figure 3.8: Equatorial plane slices averagedl over 1 (lay for a high Rayleigh nIumbler
run: Ra = E7, Ek = 1.5E - 4, Rr- = 10. upper left: zon~al velocity [In1sl; upperC
middle: meridional velocity ImI/sl; upper right: vertical velocity Im/si; lower left:
converted enltropy anornaly IKI: lower middle: dniyanoinaly lKyrn. . lower right:
equatorial streamfunction [1 / SI

78



-100 0 100 -40 -20 0 20 40 -4 -2 0 2 4

S' l

-50 0 50 -1 0 1 -4 -2 0 2 4

Figure 3.9: Snapshots of zonallY averaged fields on a meridional section for a run
with a moderate Rayleigh number: Ra = 3E6. Ek = 1.5E -1. Pr = 10. Upper left:
zonal v,locitv I./1sl: upper nidlle: 111cridional velocity Im /sI upper right: vertical
velocity in/sl: lower left: converted entro)y a,noma,ly Ixl; lower middle : (ensity
aInIaly i. lower right: 21) incridional streanifiniction W!sl.
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Figure 3.10: Snapshots of fields at the 1 bar surface for a run with a moderate Rayleigh
number. Ra = 3E6, Ek = 1.5E - 4, Pr = 10. Upper left: zonal velocity il/sj: upp)er
right: mneridional velocity jilns]; middle left: coniverted entropy anomnaly I Kl; middle
right: dlensity anotnialy jKg rnt- 3 

1: lower left: pressure anomnaly I1barl; lower right:
momentum flux [10-4 mr2 /,. 2 ].
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Figure 3.12: 1 bar surface for a run with a moderate Rayleigh number time averaged
over 12 dlays. Ra = 3E6. Ek = 1.5E - 4. Pr =10. Uppe)r left: zonal velocity kI/SI;
upperC right: mreridional velocity Inilsl; mIidldle left: converted enltrop*)A anomaly IKI;
middle right: dlensity anomaly jKg rtl- 1 I; lower left: pressure anomnaly Ibarl; lower
right: momentum flux jj0-4,[I 2 /',3j.
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Chapter 4

Basic Balances and the Vertical Wind

Structure

4.1 Introduction

One of' ic most fund(amntlal quest ions regarding the atmospheres of lie gas giant

planets is ho (1ce ale th( e strlong winds1 .vhich atiC obserd1eI iii t heir at.mosp51hIere'.

The onily dlirect. observatio i0 s fronti the Galijleo p)robe. which showed1 an inicrease in

zonal velocityv from 80 iol.; to 160 ml/s (down to the 4 b)ar level. andl then a const ant

Wind( "peed for as tar (lownli s tie( (dat a cou1ld be retrievedt (thle 2.4 bar level). (At kinsoni

(et al.. 1996). Beyond( thle problem of having only at single meiasuiremnent profile. t he'

probe enlt ered at -hot -spot"~ whiich ma ~' ot b)e it goodI rep)resenit at ion of tI ie general flow

(Bagenal et al... 20041). Other observational evidence for the (deep flow comes from thue

fact, that, lie heat, eisiOon otboth.Jupiter and( Saturn has a nearlY uniform mierid-

uona Istructurie (I ngersoll. 1976; Han el et al., 1981t 1983). suggesting deel) tralisfe'r of

lieat (Ingersoll and Porco, 1978). One of the main goals of the .JUNO mission is to

p)ut constraints on the dtepth of the jets via gravitY measuremnents (section 8.2.2)

RecenitlY. Li u (2006) put theoretical constraints on the possible extent of dfeep) flows

based on thle ohimic (dissipat ion createdl by the zonal flows in an electrically conuinimg

fluid bY the magnetic field. TYv suggest that if the zonat flows in the interior would

be ats strong ats t hey are on the surf ace. and the mnaguetic field can also be deduced by

the surface values, then Oihe zonal winds could not, penetrate mtore than 0.95 anid (0.87

of the radius on ii.) ter and Sat urn resp)ect ively. In t his stlh1dlv we (1o not inchlude ilie
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effect of the magnetic field; however we show that even without the magnetic field

acting to dissipate the flow in the interior, we do not expect to find interior velocities

as large as the atmos)heric ones, based only on the big increase inl density between

the outer atmosphere and the interior.

In this chapter we atteiript to address the question of the deep velocities using

our numerical model. Previous models could not address this issue since they were

either shallow type models (e.g. Cho and Polvani. 1996; Showman et al., 2006) or

deep models that were restricted to the Boussinesq approximation (Sun et al., 1993;

Zhang and Schubert, 1996, 1997; Aurnou and Olson, 2001). For example Heinipel

et al. (2005) and Heimpel and Aurnou (2007) show superrotating equatorial zonal

flow, with higher latitude ineridionally confined jets in a Boussinesq model which

goes down to 0.9 of the planetary radius. The zonal velocities persist throughout

the depth of the planet, and the meridional extent of the equatorial superrotating jet

depends on the location of the bottom boundary. Clearly for addressing the baroclinic

structure of the zonal winds we want allow density variations over the depth of the

planet. Using both an anelastic model and a suitable equation of state allows us to

address this issue more thoroughly. We tr' to decouple our results from the choice

of the location of the bottom boundary and therefore push it deep below what is

believed to be the boundary of the molecular fluid (we experiment with the bottom

boundary location in section 6.1). We find the compressibility effects very important

in understanding the vertical wind structure.

As discussed in the introduction, based on emission measurements and on ID ra-

diative theoretical models it is believed that the deep atmosphere is in a convective

state (Guillot, 2005). A common assumption is that if the interior is convective it is

close to a purely barotropic state. This is based on the assumption that convection

causes uniform mixing limiting the density variations across pressure surfaces. We

note two things: First convection tends to form plumes meaning that even if the at-

mosphere is driven by strong convection since the regions of strong upwelling plumes

tend to be very localized (Lindzen, 1977), much of the atmosphere may be slightly

stably stratified with small regions of convectively unstable plumes, and the atmo-

sphere can still have horizontal density gradients. Second, the density anomalies are

not just a function of entropy or heat anomalies, but also in an anelastic system are

affected by the compressible effects, thus giving a significant baroclinic contribution.

In this chapter we begin by looking at the basic balances showing that to first or-
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(de the nliotioni is ~() gotropic aiild hydnrwsat-W. Thlen Nve show how the dlicrinial wid

relation is revisedI whvni (n)nsidering a deep atniospihere rather than oiie, restricted

to a spherical shiell. Incorporat ing the anlastic approxiniat ion the vort icity e(Iia-

tion hiigh lights thle iip 1 ort ance of tHe barocliAic "to Hbrlutionis. which are not, siiiall

for a coniipressible gas. Inl the barotropAc linit tie systemi wvill still give the Taylor-

P~roudinan const raint, hut, this is a nmore specific case t han it appears for a l3oussiineyq

flu id. W\e show that, alielast ic iliodetis iiuist have dlisitY dlepeindinig oil two ther-ilio-

dynaniic variab)les anid otherwise cani be iiiisleadin,g We show how convect ion drives

hdrv sy,vseni away hoiin it b aro t ropAc state. ailld thuis away fronti thle Tavior-PI roilili alii

conistraint. The cinvvct,ivvly driven flow in steady state is in a state in b)etween hav-

ing Ilylor coluuins, withI thle zonal velocity b)einlg const ant along t he (lirect ion of o lie

rota:t ion axis. to const ait niionwii ntn (Q~) aloiig this olirecti. Thle barocinic ownt ri-

bu tioiis therefore set th limerical shear, and in secth 4on1 we pnmvced to pariietWoz(

the shear of the zmnal flow using scaling arguinents. WXe showv the (details of the in(erior

ci rculat ion incluiA ng; tlv heKoiia,thin of large scale cohnnnuar stnru-tumirs xwhT hiave keen

suggested inl quialitative studlies (Busse, 1976). These coltiiinar struictutres slirrolid(

lie int oTir core and have vor-ticitv iin thle satiie seise as t he nieaii shear "?e anal yne

the angular nionientuni and heat flux buidgets and show the roles of eddy and meCan1

fluxes in driving the circulat ion. We find that thle zonal asynitii s ando angular

nimtiet uni eddy fluxes play aii iijumutalt role ini tranisport ing angular iiioiiienit lint to

lie evpia.t r atal fornlinig the evluatordal superrntat-iing zmiia flows.

4.2 Basic Balances

Giveii the set of iiiodel eqluat ions (2.7). (2.8). (2.9). (2.10). (2.28) and (2.47), and thle

soltitions p)resenlted1 in sect.ioni 3.3 we begin b)y looking at the leading ordler balances

inl thlese solutiiions. These balances are impilortaiit for iun(derst anin ig thle key physical

iiiechianisiiis inl thle dlynainics and for further analysis when developing theories wi th

hligher order exp)ansionis. Beginning with tile zonal nionientuni balance, for sniall

Rossby an(l Ekiiia un111ibers thle le'adiing order terins iii the niioinentunii equat ionis
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Figure 4.1: Geostrophic balance: the two plots oi the left show the geostrophic
balace for the zonally averaged fields (meridional section) and the difference between
them is shown on the right.

(2.8-2.10) give

1 Op'
-2Q sin 0v + 2Q cos Ow - (4.1)T)r cos 0 0

2QsinOij - (4.2)pr 0

-McosOu - -g (4.3)pOr Tp

where all variables and coordinates are the same ,as defined in chapter 2. Density and

pressure have been expanded as in (2.1 and 2.2) to a mean horizontally independent

hydrostatic part and an anomaly. Note that we are using the standard form of the

vertical momentum equation and not the equivalent anelastic form with the revised

gravity term as in (2.26). As discussed in section 2.2 in the deep system, apriori

all four Coriolis terms contribute to the geostrophic balance. Here we show that

indeed this is the case. The numerical results presented here are from 3D runs at a

10 resolution and 120 vertical levels extending to 0.55 the radius of the planet. The

pressure variation is from 1 bar in the upper level to 12 Mbars in the interior with a

pressure increase of ratio 1.33 between vertical levels. Rayleigh, Prandtl and Ekman

numbers as defined in (2.53) are 5E7, 10 and 1.5E - 4 respectively. In Figure 4.1

we show that to the first order the flow is in geostrophic balance; thus the pressure
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Vigure -1.2: 1-1, drost at ic b)alanIce: left : buioyancY termn: mIidle-left : radilal pressurei
gradlient: ini(lddle-right.: dlifferenice b)etween the panlels onl the right.- right: vertical
Coriolis terin

gradlients are inl balance with thle CToriolis termin (l'quationi 4.2. Inl (4.1) the zoniall ,v

averaged1 C oriolis teris b a lance each ot her. The ageost rophiic conitributions to l(),i

ioillentlimi equation are all order of magnitude smaller andi are dlominiated by the

conivectiLon. which gives tilie s.)ignature of' plumes aligned1 wit h the axis of totattOon

as shiowni ili section 3.1 .1 for thle 2 D case and( wviil be di scuissed lateru onl For the 31)

case. This implies that for the p)arame'ter regime of Jupiter the assumpt ion of a snmall

Possbiv number. which wvill b)e usedl inl later ania-lysis is validl.

Next we' look at thle ve'rtical miomentumn balance. lin thle t radit ional shiallow tYpe

syvstemi thle leadling order balance wvoiuld be betwveen the vert ical p)ressure gradlient and(

b)uovancY givinug bvYlrost at ic balance (beyvond the higher or(der b)asic state hYd(rost at ic

lbalane- pg). However (due to the large aspect ratio. the Coriolis acceleration
inl the vertical 1omen0lttuml balance is not negligible. Inl Figure 4.2 we show that thle

differene b)etweenI the hYd(ro)stat ic termls is almost exact lY the vertical illonlentluil

equation Coriolis term. This verifies that (4.3) is indeed the leading order balance.

This is imiport ant when lookinig at thermail wind balance for thle (feel) sYst eni whichi

wve (10 inl the next sect ion. Therefore we refer to the lbasic balance b)einig geost rophic

and1( hydrost atic buut unlike the classic shallow fluidl case it includes the nuonu-negligible

vertical Coriolis terit.
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4.3 The Vertical Structure of the Zonal Velocity

4.3.1 Thermal Wind for a Deep Anelastic Setting

We begin by revisiting the thernmal wind relation for a deep atinospherc. As discussed

in section 4.2 unlike the traditional approximation the aspect ratio between vertical

and horizontal scale is not small, and therefore the Coriolis term in the vertical

equation and the one associated with vertical motion in the zonal equation are not

negligible. We are interested in the effect of the Coriolis terms and the density gradient

oin the velocity structure. Taking the radial derivative of (4.2) and using (4.3) gives

Ou _ g Op' 10Of) 1 Ou 17 (44)OU - 2r OsinO cp O cot Ou - -cot0 a- - (4.4)
O,r- 2QrT sill00 jD- 00r 00 T) Or

More information would be needed to get independent expressions for the vertical

and latitudinal velocity gradients, but noting that the direction parallel to the axis

of rotation is given bv

sin0 +cos O - (45)

OZ Or ro0

we can write the zonal velocity gradient in the direction parallel to the rotation axis

as

Ou .q Op' u O0p' 1073au--O_ - -COSO - Usi 0. (4.6)
Oz 2QrT) 00 pir 00 79 Or

This expression includes non orthogonal derivatives, unlike the standard approxi-

ilation (Pedlosky, 1987) which is sufficient for a shallow system where the shear is

associated with the perpendicular density gradient. In addition the zonal velocity

gradient has contributions from both the vertical and latitudinal density gradients.

Note that all terms on the right hand side have the mean density in the denominator.

If density gradients driven by the internal convection have roughly the same scale on

the top and bottom of the dleep atmosphere, while the density is much bigger at the
bottom rather than on top, one may expect a stronger vertical shear on top than at

the bottom. We look at this more in detail in section 4.7 and show a paralmetriza-

tion for the shear based on scaling arguments which we compare to the numerical

results. Scaling the terms in (4.6) shows that the second term on the right hand side
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1s all ordt er Lsitial ler thll lhe other terms11. Tlj t he lcadlilio ordleri balanice becomes('

oil y_ L 0 ' 1) OP)

0: 2rT JI/ sinll (4.7)

IIVIelOre t he shear in I lic d1irect ion of' Owh rot at ion axis is compllosedl of' thle mieridlionial

desiv noiakv g-radlienit aud the vertical miean (denisit gradient. In section -. 3.2 wve

show winiericallY how each of these varies spatiall.y.

4.3.2 The Role of Compressibility in the Baroclinic Vorticity

Production

Anot her wva * of obtaining balance between the zonal velocitY and the dlensitY gradlient s

would1 be to take (1 irec(t lv th le curl of' die 3D nlionilentui equa tiou n Iut iplied bY the

ktill dlsitY p giving

2 V (pu) -- 2 2 V (pu) =Vp1 x g.(1)

Then. assumling t he (lelislt..\ has a nieani horizont.allY Ind(epenidenit hYdros"tatic part

aind a snialler anoinalY (2.1), and applyving tihe anelast.ic approximiationi (2.5) gives

'2Q~ -v ([i) Vp' X Y (4.9)

whli is simtilar to (4.7). lIn thle Bl3oissilles(I limit this gives tle st andiardl thlerimal "v11nd

relat ion. Note that if the right side -would vanish this wvould niot b)e tie b)arot.ropic

Ilitilt.. smice In lie b)arotrop)ic linmit, tile cross product of thle full dlensitY and( f*Ull pressuir

vanishes. To see thle b)arot ropic limit we rewrite the right lianid sidle of' (4.9) as

V-Ixq v7i x VP - vp x vp. (-I.1o)

Where wve have split both density and p~ressurie inito a hydro~static part and a snialler.

anomalY (2.1. 2.2). In thle b)arotropic limit the second teruin on thle right handl sidle of

(.10) is idlent ical lY Zero. aiid for* a geost rolhicall.v b)alaniced H ilid thle first t eriii Wouldi
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give

=Vp x Vp = Vp x (2 x u) =uV. 2Q - 2Q (VT). u) (4.11)
P P

Using the anelastic approximation and expanding the right hand side of (4.8) with

(4.11) gives

2QT. Vu-2Q V•u = 0 (4.12)

which is the classic Taylor-Proudnian theorem for a barotropic fluid (Pedlosky, 1987).

Thus if the fluid is barotropic we would expect that the zonal velocity is independent

of the direction parallel with the rotation axis and, if the fluid is also Boussinesq we

expect that the full velocity vector is independent of this direction. We are interested

though in going away from these two limits and study the role of the baroclinic eflects

in an anelastic fluid driven by convection. The convection would drive the density

gradients away froi zero, and the level of baroclinicity will set how far we are from

the Taylor-Proudinan theorem regime. The baroclinic form of (4.12) can be seen by

taking the curl of the momentum equation (without multiplying by the density first)

giving

1
2Qp. Vu - 2QTV . u - -[Vp x Vp' + Vp' x VP. (4.13)

Expressing the density in terms of pressure and entropy as in (2.20)

V= (P's 9P VPI + OP Vs (4.14)

allows rewriting the vorticity equation (4.13) for an adiabatic referemce state to the

highest order as

2Qp- Vu-2Q-pV-u -1 fp-) Vs5 x vp-- x g. (4.15)

Hence, equations (4.9) and (4.15) give two equivalent forms of the vorticity equa-

tion where the baroclinic terms are given once in terms of the density gradients, and

once in terms of the entropy gradients. We have shown in chapter 2 that for an anelas-
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Figure 1.3: Thie contribtioins of* (entropY and( pressure to~ thle (lenisitY\ aiioniialy anid

shear. left: thle ent ropY anomalY cont rilbutioin to (4.17). mliddle: tie pressure ailnaly,
c'ontrilbuion to (4.1 7): right: the density anoinaly cont ribuition (equal to thle sumi of
the' two le,ft panels -eqjuation 1.14).

tic and adijabat ic fluid the buioyaiicv naturally is given ini ternis of enitroly rat her then

dlensity (sincwe thle backgrouintd density is varyinig while the enlt ropy is not).Ihrfr

this form of' the vortjiity equlatio is ISconsist ent wvith thle b aroitropic liiiit -where thle

right hand sidle vanishes. However, while in a B3oussines(. fluid the dlivergenice
wvill van ishi as Well giving lie st andard 'T(i.lor- Prot01(1ian t heoreni in the ancilaslic

(ase it. wvill not, and t herefore thle velocity graodient Nvill depend onu the compilressib)ilitNv.

Tlo wliderst and the role of* thle p)ressuire gradhient fr-oii (4.14) in (4.9) we conisider

onlyv thle zonal comonl)ient of (4.9) and (4.15). so0 hat

OuT) (10 (,.I(i)
r - 1 0

2S2 (pui) = "y_ + (1.17
0,- r dO r

where o, and -3 are thle isentropic and isobaric coefhiits in (4.14). which are definled

(,xl)li(-itI.N ini (2.20). Therefore sub)tract ing (4.16) fromi (4.17) shows that the relat ion

21 r __ I'130) (1.18)
o9z 1.d0

ntiust hiold. This means t hat thle pressure cont rib)utiou to the denisitly allnalY accounts
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Figure 4.4: The vorticity equation balance

for the variation in the mean density. Expression (4.17) then suggests a few possible

situations: if the contribution of (4.18) to the right hand side of (4.17) is small, then

the zonal velocity gradient would depend on the derivative of the entropy anomalies.

In the barotropic limit this would give the standard invariance of u in the direction

parallel to the axis of rotation, similar to the barotropic Boussinesq case. However

if the contribution of (4.18) is not small then compressible effects are important and

the system becomes different from the barotropic case. In a particular case where the

two terms on the right hand side of (4.17) cancel each other then we expect the zonal

momentum (pu) to be constant along the z axis.

We find that in statistical steady state of our numerical simulations the system is

in a state in between these two extreme scenarios and that this level of baroclinicity

depends greatly oii latitude. In Figure 4.3 we look at each of the terms in the vorticity

equation to see its relevant contribution in (4.17). We can see that the contribution

of pressure anomalies is large especially around the upper boundary while entropy

contribution is larger in the interior. This is seen clearly also in Figures 3.5, 3.6 and 3.7

which are surface slices taken roughly at the top middle and bottom of the atmosphere.

Near the top density anomaly is strongly influenced by the pressure anomalies while in

the interior density anomalies are influenced by the entropy anomalies. If we would

not have included the pressure variation contribution to density, then the density
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Figure 41.5: The zoniallv averagedl zonal velocity for anI Anielastic run (left) and aI
B3oussinies(I run (right). Huins (lifter iii R.ay'leigh number I-a =3E'6 for Ancelast ic
and IE7 for Boussinesq where Ek = 1 .5E - 4 and Pr -10. (Figure 3.4 shows a
similar plot withl same( RaYleigh nlumblers for b)oth runs).

rep)resente(d onlY bY entropY anmomalies will not be balancing tie comipressile part oft

thle terill onl the left hand side of 4.17'. In a ease of small ent roply anomaahes this will

lead to appiearanice of having pni close to conistanlt along the dlirection of the rotation

axis. Therefore wve concludle that tile pressure conitribution is crucial when using thle

aniclastic approximnat ion. lIn a Boussines(I systemi where thle svystemr has al constanit
eiesity thme pertulrbationica be described by only the etoy

lIn order to understand the zonial velocitlv vertical struct tire we should look at, how

t he dlensitYv cottribut ions ab)ove contrnibu te to thle (differenlt comni)ienits of v(platioMIS

4.9 and 4.13. First wve niote that looking a.t the two right panels in Figure 4.4 shows

that relationi 4.9 holds as we expect for a, sirall RossbY muniber. Then b)reakinig this

balance into its components oi the two left liand1 sidle patiels in Figure 4.4 shows

that at low latitudes the z -shecar of the zonial velocitY itself is sinaller than at high

lat it udes, buit at thle higher hat itudles where the ;>sliear of zonial velocitY is larger it is

accompanied by a, comn lsatinig shear in p leading to a partial cancellations of these

two contributions.
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4.3.3 Anelastic versus Boussinesq Cases

The importance of the anelastic effects are demonstrated in Figure 4.5 where we

compare two similar runs one anelastic and one Boussinesq. The anelastic case has

the density varying from 0.15 Kg/rn 3 at the top level (at 1 bar of pressure) to 1983

Kg/r at the bottom level (Figure 2.4), while the Boussinesq case is set so that the

mean density is constant and equal to the weighted averaged density of the anelastic

case (921 Kg/rt 3 ). In this case Anelastic and Boussinesq experiments have similar

magnitudes of their zonal velocity. In Figure 3.4 we show similar 3D experiments

where the anelastic and Boussinesq runs have exactly the sarlie parameters. For the

Boussinesq runs since the mean density does not depend on pressure the density

anomaly is just a function of entropy and not of pressure. In Figure 4.5 we look at

meridional slices comparing the zonally averaged zonal velocity fields.

Both runs have a similar velocity structure at the surface; however while the

Boussinesq run is barotropic (in the z direction) with strong velocities in the interior,

the anclastic case has strong baroclinicity near the surface with strong shears at amid

and high latitudes with a weaker baroclinic structure (though still not barotropic)

closer to the equator. The meridional extent of the superrotation is similar in both

cases. To look at the baroclinic structure along the z axis more specifically we look at

velocity sections along the z axis for two runs of similar Rayleigh numbers. In Figure

4.6 each section is named by the latitude in which it outcrops at the surface.

4.4 The Angular Momentum Balance

In section 4.2 we showed that to the leading order in the zonally averaged zonal

momentum equation the vertical and horizontal Coriolis terms would balance each

other. Next we look at the dynamical balances of the zonally averaged zonal mnomen-

tum equation. We divide the zonal velocity into a zonal mean and a deviation from

that mean denoted by

U = U+ U'. (4.19)

Then to the leading order

U + tan - 212 sin O-T+2Q cos OT+V -. (rif) + V. (T ) V V 2  (4.20)
r r p p
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Figure 4.6: Zonal ly averaged zofl al velocity for A:n elastic and Boussinesq rius along
slices parallel to the( axis of rotat ion. Each slice goes from the surface (deinoted 1w
he latitude) to the equatorial plaIe.

where zonal averaging is (leote(l with tlhe bar. BeyondI the lowest order geost rolhic'
)alanice betweenm the Coiolis terms in (4.20) as implied by (4.1). we find looking at

the numeric values that to the niext order the leading terms arc the eddy momentum
flux (livergeilce, an(l thme viscous flux so that

where we denote with the sl11scriit the next or(ler component. Since the variations

along thle axis of rotation are small, then when looking on the equatorial p)lanie (the

equatorial line' in thme zonallv averaged1 picture) the leading ordler 1)alan(e is

1 00 IG ((

where in fact only the higher ordler viscosity (derivatives are significant. Ini Jigur(, 4.7
we' show 1)th c:Omnl)OInents of the; momenturn flux divergence, for a section alhng the

equator. It. shows that the momentum flnE divergence is dlorinatedI ly the radial

fluxes. The momentum fluxes are outward and big in a localized region. This mo-
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Figure 4.7: The radial and latitudinal (dashed) contributions to the zonal momentum
flux divergence as function of radius at the equator.

mentuin transfer is the basis for understanding the circulation of the mo(del an(t the

formation of the equatorial superrotation. We discuss this further in section 5.1.

It is convenient to rewrite equation (4.20) in terms of the angular iomentum

Al = Qr'2cos2 0 + urcosO (4.23)

so that

_ +}. (K,-J) +-lV- ( 'jp) = VV 2 ,11 (4.24)

where we have split the angular momentum into a perturbation and a zonal mean.

Integrating this equation multiplied by the mean density over a volume contained

by the exterior surface and a constant angular momentum surface (which is nearly

parallel to the axis of rotation because of the dominance of the first term in 1l). will

cause the contribution from the mean fluxes to vanish since

f V . (p-:,-l) dV = M f V . (p-) dV = 0.

Therefore in steady state friction is necessary to balance the angular momentum eddy

fluxes. This also shows that, for the 2D case, no mean zonal circulation can form.

For the 3D case only eddy angular momentum fluxes cali carry angular momentum

cross mean angular momentum contours (although locally mean fluxes can do so as

well). Considering the meridional plane streamfunction shown in Figure 3.4 the fact
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S4:

Figure 4.8: Aiiguilar mtomeiittuim (left ) aid lieat (right.) mean (r ed) ald( eddY1 (hlue)
fi\es inl a meridionlal cross sectii.

hat tile zoll. vrged (or 2D) irieridioiial circuilation is coilfit(l( to narrow b)atids

alotig thle axis of rota tion is relat ed to the fact that t) litmeani circuilatioi c-an nlot

cross anigiflar mnomiitmuii cotoumrs which are p)arallel to the axis of rotation. 'I'lle

widlthi of these b and(s will be relatedl t herefore to the mnagiiitii1(Ie of t lie viscosit.y, anid

Nve expect that inl thle hlmit of' small Ekmnaniiumber these conivective mean meridionlal

circiilat,lii banmls will b)ecome niarrower. Comparinig tile anigular 111ionieuitu111i uIlanl

fluxes (wvithbout thle solidl bodY complotnvit of' .l). to the anlgular mnometunii edd(ly

flixe,s inl Figuire 4.8. we finid that while the iteani fliixes tranisfer anguilar nmomienltlii

mnaiinly parallel to thle mneaii anguilar mnomeltttim coiltotirs. thle edd(Y fluxes traiisport

the( anlglar. 1uiolicint,1111 across mcati aiiguilar momiAntim11 conitouirs to low lalt it lidles.

This mnechan ism is mnost p)roiieli~t inl the regionl olitside thle tanlgenit cylinider whIere

thle large scale coluimnar strutct tires initeract with tie iman shear. This tranlsfer of

anguilar moimentIiii through thle tuirhudeiit fliixes to thle equiatorial ouiter regions of

the planiet (drives the equiat,orial suirface stuperrotatimn. NVe disetuss this iriechaiiisili inl

chapter 5.

The right ham(l pinel shows the eqifivalent. ed(Iy heat and meaiii hicat fluixes,,. As

opp)osed to the anigular momentuim, there aire stronig heat fluxes also inl high lat ittidevs.
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Figure 4.9: The zonal (blue), ineridional (red) and vertical (green) zonally averaged
surface velocities for a run with parameters: Ra =1E7, Ek = 1.5E- 4 and Pr = 10.
The dashed line is the normalized mean angular momentum.

This transfer of heat mainly parallel to the rotation axis moves heat from lower to

higher latitudes (a section parallel to the rotation axis outcrops in a higher latitude in

the upper boundary than in the lower boundary). This results in heating of the polar

regions. We hypothesize that this mechanism of heat transport to higher latitudes by

internal mean heat fluxes parallel to the axis of rotation can balance the solar heating

resulting in the observed flat emission on Jupiter and Saturn. Figure 4.9 shows the

zonallv averaged surface velocities and normalized mean angular momentum. At low

latitudes we find a Hadley cell (weaker than the zonal flow) which is driven by the

equatorial upwelling seen in Figure 4.8. Exterior to the tangent cylinder containing

the eddy angular momentum flux convergence we find an inverse meridional cell (sur-

face flow away from the pole), which is a surface return flow driven by the poleward

heat flux. The latitude where eddy angular momentum fluxes are zero, meaning that

the mean surface zonal velocity is zero is also where the meridional surface flow van-

ishes due to tile relation between the meridional velocity and the eddy flux divergence

(4.21).

4.5 The Effect of Rotation

We have seen that for the parameter regime of Jupiter and Saturn Rossby numbers are

small and therefore rotation is important in the basic balances. In the 2D Boussinesq
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Figure -.10: [lie ratio andl the value of JVJ as a function of the rotation period.

Itlls 'we hadve slioNvii t hat lhe ratio0 of,~~yi all impijort ant Iicasuirc for chiaraicterizing

the flow. For the( allelastic case (file to having a Ineal state W~ithI a density gradieilt

the buoYancY frequencY is dlefinceol in terms of elitr-opY. \\e shjow tis bY dlifferentiat ing

tlie liniear fliol-rot at'ing case' of equation (2.26) in t jinie. which gives

jt2 1 0 Or Or i

wvhere we haxv used relation (2.28) a-s wvell. Therefore for the anelast ic sYst,ven the

equiivalenit to H ie t radlitional Brumnt -Vaisala frequencY is

Or Or

Since inl (2.26) the temperatuire gradlient rep)lacedl gravity, and( wve have showni thlat

entropy rather then donsitY is the natural variable for b)uovaie.v inI the anehastic SvS-

tem,i then this buioyan cy frequency is the natural ouitcomie. For the convect ive systvn

however tis value becomles negative. InI the 2D sYstem convect ion was conicentratodl

in specific regious and thIerefore' for most cases the mecan N 2 whecn avc'ragcd over t lie

whole doinmaini Nws still positive. however for the 3D experiments sliown lhere the umean

A,\'2 iS nlegative. Still. tie ab)solute value (although not a b)uo.vancy frequency.v) gives
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Figure 4.11: The nondimensional number X t Pr)s as function of the rotation
period and the mean zonal velocity at the surface averaged around tile equator as
function of the rotation period for a set of experiments with equal parameters but
varying rotation period Ra = 3E6. Pr = 10.

a goodi measure for the intensity of the convection. In Figure 4.10 we show a set of

experiments where we vary the rotation period for a given model configuration. We

find that the value of IN'l grows (even though the Rayleigh number is kept constant)

with faster rotation period, trot decreases as the rotation perio(l grows, an(t to

a reasonable approximation when 12 2- is less than one the flow is no longer alignedINII
with the rotation axis. When > 1 the flow is aligned with the rotation axis.

As discussed in section 3.1.1 a similar measure which is better defined in terms of

convection and uses the nondimensional parameters of our system is

Ta. Pr
Ra

In Figure 4.11 we plot this parameter as function of the rotation period. For the

set of parameters of this experiments at a rotation period of 85 hours X 1 . As

seen in previous sections for the rotation period of Jupiter and Saturn tile velocities

are aligned with the rotation axis characterized by strong superrotation around the

equator. On the same plot we show also the mean surface zonal velocity around the

equator for these runs. We find that at about 50 hours the velocity changes from being
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p)osit ive (ea'~stward( velocit.v) to niegat ive. T1he 1n1111icrical exp)erimienit s with fiast rot at iOl

p)eriod1 all have very similar velocity profiles. characterized hystrong superrotationl at

he equator. B(3evoiid a rot at ion p)eriodi of 50 hours though, the natunre of the dYnili(Is

chianges quite rapidllY and ill( zonial icani develops large closed circulat ioiis inl the r-O6

p)lane( wvith no) alignment with the rotat ion axis. This is similar to what we hiwve

showni for the 2D case (Figure 3.2), however tis circulationi is also accompfanied wvith

suihrot at ion at thle equator. InI Figure .1.12 we show thle zoniallY averaged velocitYv for

two examples ouit. of' this set of' runs, one(. with the rotation period of .Jupiter (9.92

hours). anid thle second NvwithI a rotat ion period of 80 hours. W\e find oie( of thiese

two states to appear for the whole ranige of experiments p)resen1ted iii Figures 4.10

and 4.11. The transition between thle two states at a rotat ion periodl of 50 hours is

very rapidl. The cst.iinat e for t his tranisition based onl 11 2 is at 30 hours. buit sinice b)v
avevragiiig V2we are approximating thle iniil buoyancy InI t he whole domlainl this is

estilliate seellis wvithin the reasonable error. The estimate based onl the limfit., is

at 85 hours.

4.6 Properties in the Zonally Asymmetric Circula-

tion

So far wve have looked at t he zoniallY veraged fields inl th le 31) model. Thel( d iffereices

between the 2D and the ;3D flow indicate that zonal asymnietries are impljortanlt for

thle 3D) circulation. WXe have seeii that eddyv mtomientuni fluxes carrY nionrt uni awaY

F rom ilie axis of rot at ion to thle outer equatorial part. Next we look at thle zonad

structure of thle circuilat ioll.

4.6.1 Formation of Columnar Convection

Looking atthe equatorial plane the motprominent feature beyondthsrogp -

gradle velocities near t he upper bouindar.v anid the retrogradle velocities ticear the iner

bounldarY are large positivelY rotatinig (ill resp)ect to the rotat ion of t he planet) edd(ies

inl the interior. Busse (1976) has suggested that Taylor columnns can formi aronid a

hot convective interior andl the interaction of the columins can dlrive the ,Jets inI the

atmnosphere. Zhiang and Schubert (1996) have shown fornmation of conivectionl cells iii

BousslilesqI 3D niiodel for RaYleighi-Benard type convection. Here we use the anelastiC
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Figure 4.12: The effect of rotation: Velocity fields for a fa.st an slow rotating Ilanet.
(left) rotation period of 9.92 hours; (right) rotation period of 80 hours; In color are
tile zonal mecan zonal velocities where red is eastward, and the arrows arc thle zonally
averaged radial and meridional velocities.
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:,igure -4.13: The 2 D streanifiniction oil slice or5 ien ited towardl tile( cen ter of the plaiiet
(radius-lonii tde surfaces). shiowing tilhe formaitioni of' Colunins wh ich I are dIriv en by
thie conv ection. Pluis signs are located at an equal (listance fromi the rotation axis in
all p)aIe(sI! and located wxithlini one( of' the columns. slhowxing that t Ihese colunins are

parallel to t he axis of' rotation.

miodIel to show thle forition01 of such columnlar structuires that e'xtenid almost fromi

one b)oundiarY to the other crossing the equat.orial plante at about, 2,,3 the p)lanletar.\

radius. In Figure 4.1:3 we show the 2D streanifuniction onl slices along the longitumd e

radlius p)lanes onl constant latitude surfaces (so that the surfaces are not p)arallel)+

The sl ices are spreadl apoart ill 5' in latit udeI goinig miort hward. TIme( closedl structmires

onl the equatorial plane (upper left painel) extend out in radlins as they move ouit in

latitude so that theY are p)arallel to the rotation axis. To (lemionstrat e t his wve have

marked thle center of oine of' thle columIns oil the equatorial planie with at pis signi. ami(l

the plus signs onl thle other planes have anl equal dlistanlce to the rotition axis. andl

thle samne longitudinal angle. We find these columnar features to be a robust feature

ini all nlumerical exp)erimient s.
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4.7 Scaling Estimates for the Vertical Profile of the

Zonal Wind

We try to estimate the scale of the density gradients driven bv the convection. This

is beneficial for understanding whether the representation of convection in our model

can be interpreted in terms of simple scaling arguments; also by estimating the den-

sity gradients, we hope to have an estimate for the zonal velocity vertical shear. It is

important to distinguish between the density gradients from the convective plumes,

and the larger scale geostrophically balanced density gradients. We begin by estimat-

ing the amplitude of the velocities driven by the convection and comparing them to

the corresponding velocities obtained by our numerical model. Following Fernando

et al. (1991), and Ingersoll and Pollard (1982) we estimate the mean heat flux carried

by convection as

F = pCp?w'AT, (4.25)

where - is the mean density, Cp is the specific heat (which we can calculate from

the EOS properties (Kippenhahn and Weigert, 1990), and is a function of depth),

AT is the temperature across the plumes and w' is the convectively driven vertical

velocity. Due to the rotation we can relate the production of vorticity and the buoy-

ancy anomaly via the vertical momentum balance which gives a balance between the

Coriolis force and the buoyancy so that

QU' - agAT (4.26)

Now we can write an expression for the correlation of these two velocities as a function

of the thermodynamic variables and the heat flux so that

- agF (4.27)

All variables oi the right hand side of (4.27) are given by the EOS and the reference

state of the model. The flux can be inferred from the prescribed radial heating profile.

Tile forcing as applied to tile model assumes the vertical profile is close to adiabatic

and that the planet is cooling on very long time scales. The forcing is applied to the
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Figure -. 1 1: i'uw' estimated from scaling arguments and the rms from the model. The
plot has the model ou t put f1w ui' anl u' separately where u? is bounded to zero at

the upper )oundary while u' has a slip condition. and the comhl)ined ( Uw')2

heat budget as a heat source Q given )v

o,' 1 v (-4i _ = V F (1.8)

f pOr IT

Which vlIen integrat('d over t he volume is zero. Tlierefor(, we can calculate Ilie effec-

tie flux (F) at each depth from the heating by

I /PQr.' - Fi (1.2)

where P') is zero since the flux at. the bottom is zero. Comparing the right hand

side term in (4.27) shows a good agreement with the eddy rmis velocities given by

the model, this is shown in Figure 4.14. This means that our convectively driven

velocities are on average well approxiniated by these arguments, even though the

(ovectivv velocities themselves are stronger than what we expect oil .Jupiter because

the heat flux prescribed to the model is stronger than the heat flux we expect to find

oi .Jupiter.

A common feature of numerical models is that the forcing (in terms of heat flux)

must excee( in orders of magnitude what we believe exists in the interiors of the

giant planets (which is on the order of 10" on Ju)iter (flanel vt al.. 1981). and
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even less on Saturn (Hanel et al.. 1983)). The reason for this over-forcing is that

due to numerical grid size limitations the turbulent viscosities and diffilsivities used

in numerical models averages the turbulence in a grid box rather than represent the

molecular value, and therefore the Ekman numbers are orders of magnitude too large.

This means that to reach flux Rayleigh numbers which exceed critical and are as tur-

bulent as numerics allows, the large viscosities and diffusivities must be compensated

by effectively large fluxes exceeding the values we believe exist on the giant planets.

In fact, even when over-prescribing the fluxes, the Rayleigh numbers are many order

of magnitude smaller the expected planetary ones. Therefore these numerical models

should be thought of only in terms of the nondimensional parameters and not in terms

of the actual heat fluxes, viscosities, diffusivities etc. Nevertheless, our objective is to

infer from these models actual characteristics of the planet and overforcing the heat

flux is a problemn we should address. Therefore we present our numerical results for a

range of Rayleigh numbers in order to show the dependence on the forcing, still being

away from real planet values which will require molecular size grid not achievable

with current computational abilities.

The result in Figure 4.14 shows that even though we are overforcing the system the

scaling arguments still hold, resulting in higher turbulent velocities than we believe

exist in the interior of the planet. However since the model mean velocities (not

convective) are of the right order of magnitude and for small Rossby numbers are

geostrophically balanced, the mean densities are well represented. Bridging this gap

between tire overforcing and the resulting scales is a major challenge of numerical

modeling in convective systems.

Away from the boundaries we see in Figure 4.14 that the rms zonal and vertical

anomaly velocities are of the same order. Due to the slip boundary condition they

differ along the boundaries. Therefore for the interior if we assume that u, w'. we

calm get an estimate for the convective density gradients by using (4.26) and (4.27) so

that

2

A ( F ) 2 (4.30)

This gives ail estimate to the turbulent density anomalies, and therefore anm upper

limit to the steady state geostrophically balanced density gradients. Relating the

convective density anomalies to the mean geostrophic ones is the main leap of this
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J:igure 4. 15: Dashelili hes are thle approxiimation for tYpical zonal velocities f'rot
(.133) for -1 bar (blue) aiid 10 M har (red) as a fict ion of* Rayleigh nuniber. Dot s are
the corre'sponin g nicaii I-IIs Zo)nal veloci ty valuies froi thle inutnierical inodlel.

applroxiiiiat ion and( tiheref ore wve treat this as ani upper hlnit. Now wve uise this scale

olthle icaenu dcnIsitYV gradlient s to (esthinat e thle geost rophliic velocities aii(l shears.

InI the uunierical results presenited inl the previons sect ion Nve shtowved t iiat for

.Jtipite,r anld Saturii tYpe paraiieters thle R.ossbvY iier is sitiall. and t here are two

di fferent leingt.h scales ill the p)rolvein. )iie scale is the p)lanvetarY scale and( we takhe

this to be t he scale of the planet denioted by R?. The secoiidl scale is the scale of the

large colutiiar cells (driven bY coiivection b)ut are larger than the coiw~ect ive letigth1

scales), which we dlenot e as L. The vort icitv of' these colutiins (-aui be produced iii two

wayvs: one is the hY stretching the coluiiins aid theni the rate of vorticitv generation

is givenl l)\

M Q
(4.31)

L I?

where ui is the scale of' the itiean VelOCity., anl7 is a t iie scale. The secouiid wav of
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producing vorticity is by the curl of the buoyancy force (4.9) which can be scaled as

1 gp I (g(FQ) ~ (4.32)
LT PL L pCp

where we have used the upper limit for the density gradients as given by (4.30).

We assume that for the large scale motions the relevant time scale is the advective

tine scale 7 = L (alternatively one can assume the time scale is , this would give

back an equivalent to (4.27) as an upper limit, because assuming the upper limit in

(4.32)). Plugging the advective time scale in the equations for production of vorticity

(4.31,4.32) gives a scale for the mean zonal velocity as function of the thermodynamic

properties and the forcing

(.R13 : "(4.33)
T )

The values given by this expression give a good order of magnitude estimate to the

velocities given by the model. The question is can we infer from this, the velocities

on the real )lanet with )lanetary type fluxes? First we note that comparing (4.33)

for the atmosphere at 1 bar to the interior at IMbar the density increases by 4 orders

of magnitude and the thermal expansivity will decrease by 3 orders so we can expect

the interior velocities to be substantially smaller than the atmosphere ones. In Figure

4.15 we compare the rms velocities at 4 bar and 10 Mbar in our model to the velocities

inferred from (4.33) for different Rayleigh numbers. We keep the viscosity constant

so the change in the Rayleigh numbers reflects the change in flux. The scaling seems

to be robust for a range of Rayleigh numbers for the interior values, while for the

atmosphere (though still giving right orders of magnitude) the scaling gives less than

model values (a problem for the atmosphere scaling is that the effective forcing for

the uppermost level is zero (4.29) so we must look at a few levels below and therefore

we look at the 4 bar level and not the 1 bar level which is the upper most level of

the model) . Applying Jupiter values of F = 10 ", a = 10- 2  , R 7E7,
1.3 10 J ' and p 0.1 I,I for the atmosphere, and F = 10 I Y = 10- 5 1Cp 1---qK M, -- o-

p 10' t for the interior, we find velocities on the orders of 50 rn/s at the 1 bar

level and 0.03 rn/s for the interior. This shows a significant change in zonal velocities

between the atmosphere and the interior. To further examine the vertical profile and

to address the issue of the over forcing., we look at zonal velocity profiles along sections
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Figure 1.16: Zoniall 'v averaged zonal ve(loci tY (ins'- ) along slices parallel to thle axis of
rot ation. Each slice goes [romt the surface (denot ed 1)'v the latlide) to tile equlat orial
plane. Similar velocity profiles are slhownt for four exp)erimtentts Nvitht different Raylvigh
inihers of' I E7T. 5E6. 3E6 andl 1 KG, o1tier p)aramuet ers in these runts atre Ek =1 .51 1

and Pr = 10. thie velocity is scaled bY RaYleighi numbler t.o show tile simillar profiles.
The velocity values ma.tches that of Ro I E7. Scaling to t he velocity can b e inferred
bYw Figure -1.15.

parallel to the rotattion axis (denoted by tbe latitudes at. which the sections cross the

top surface) in Figure 4.16. The sections are separat.ed in 5 de(grees in latitude. These

s1ct.itns show at bitroclinic st ructutre of the vv0loci.v~ which has a lalt it l1iilal dlependlence

(Itue inainlY to the vairiation lin densitY and t hernial expansivitY which have different

profiles iflonig different sec tionis. An implortant p)oinit rega,rdling thle overtforcinug is that

lie profiles (which are normalized by the Rayleigh number ratio) (10 not dhepend onl

RaYleigh numbILer. This meians tHiat although the value of' thle velocitY dlepends onl

Ra,Yleighi number thle baroclinic p)rofile (does niot. and( thlerefore0 thle result of wealker

z.onal velocities lin the inteOrior is rob)ust . a,nd it roughl 1imatchies the sca,ling given

bY (4.:33) . Notec that for a constant forcing and thermal expansivit,,. tOle vertical
)rofl(' f veocit wil a state in bet.ween thle hbarotr~opic linmitprofle o' veocit.\ wll(g inve(rse0ly with p

and(lmomnentm lit(olumni limnit p)resenited in section 4.3.1 . All this suggests thatt wvith

at strong vertical vitria tioli ill (density. the1( velocitY cani varY subst ant.iallY front the

atmosphere down to tIne interior. This is dlemonstrated1 well wNN-i comparintg the

atielastic to B3oussines(I models in Figure 4.5.
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Chapter 5

Weakly Nonlinear Analysis of

Column Formation and Superrotation

In I this chLap)ter weo focus o1n t lieclaiii lIC111111 eding to the dYniiniics seeini II lie

fullY tuirbuiilenit inode1( p)resenlt ed ini chiapter 3. \Ve have showni formiat ion of c(plat oliai

superrotation1. rotating cycloic( cohiiis p)arallel to the rotltion ;1xis andl a strong

shear inI the vertical structure of the wind(. W\e have seen that upgradient angular

1iiollient 11111 e((vfluxes (rive angular 111011ient inn perpenicu 11 latr t o t lie axis of rot at ion)i

andI cont ribiate t(o the superro)tat ion. However, wve have not aniswered the qunestion of

Nvhy. are tie fluxes pointed iiiI that, direction" whY (10 Nve finid onlY cYclonic conivect ioul

coitiiiiis", WhYi do thle coliIIIIiIIS prop)agate? and( NN-ult. Sets thle 111111lber of coliIIIIiS

aroundl tihe sphere? III tis chapter Nve answer thlese (quest ion.

InI t his analYsis wve use t lie full GCMN. a simplified anal,vt ical inodlel and1 a "'iiiied

single laNer tvype nunierical mtodel. WNe look at theGOIM in a p)armineter regimhe where

convect.ion is wveak, and allows us to examine thle dYvnainics while nonlinear effects

ar(' snall. \kX+ can t hen understand thle preference for p)osit ive shevar and( prograde

rotation and show the transition froini a state withI weak cyclones andl miticyclones o1l

the equatorial plance to onie dominated by ondlY cYclones. Then inI section 5.2 we look

at a simhplified 1mod(e( of a siingle colunin (Inigersoll andl Pollard. 1982) p)arallel to the

axis of rotation and show how a Rlossby wNave tN.)( rnechanisin exlplains the direction of

p)ropagationi and the iniiber of colunins. lII sect ion 5.3 Nve' presenit another simpillified

model of a shiallow water aninihis and shiowx how this model demonstrates soniie of the

dYnalinics seeni in the full GOM.
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5.1 The Weakly Nonlinear Limit

We begin with looking at the 3D model results in the limit of small Rayleigh and

Prandtl numbers. NVe find that in this limit tile solution initially looks like linear

solutions to the problem of convection in a rotating sphere as shown t)y Zhang (1992)

and Zhang and Schubert (1997), and then goes to a state which is qualitatively similar

to the one we see in the fully turbulent ex)erinlnt shown in chapter 3. In the new

state the flow has only columnar cyclones rotating around the equatorial plane. This

weakly nonlinear solution allows us to understand the physical mechanism seen in the

fully turbulent cases. Figure 5.1 shows snapshots of the equatorial streamfunction (see

definition in section 3.3) as it evolves in time beginning frlom spin-up, and reveals two

very distinct regimes.

The first regile, while tle velocities are small (we begin with zero velocity), is

a series of equally spaced cyclonic and anticyclonic vortices on the equatorial plane.

They propagate eastward and spiral radially (see Figure 5.1). In section 5.2 we discuss

the Rossby wave type mechanism causing the eastward propagation. The spiraling

of the phase lines is due to a larger planetary vorticity gradient ill the outer region.

We discuss and demonstrate this in section 5.3. Initially since the velocities are small

the nonlinear contributions to the dynamics are weak, providing an equivalent linear

solution. Several authors (Zhang and Busse, 1987; Busse, 1994; Zhang and Schubert,

1997) have looked at the linear pro)lem of convection in a spherical rotating shell.

Zhang and Schubert (1997) solve the linear problem for a Boussinesq fluid where the

flow is driven by an internal heating profile. The solutions they find for the velocities

and the temperature fields are given as an analytic expression in terms of spherical

harmonic Legendre polynomials and spherical Bessel functions. These solutions look

very similar to our solution in this first regime. Therefore as long as the perturbation

is small and tle flow is close to linear our solutions match previous linear analysis.

The system is constantly driven by the convection and therefore in time (while the

effect of dissipation is small), the velocities become larger. As they become stronger

due to the tilt in the direction of the convection columns as given by the linear solution

(there is a correlation between the direction of zonal and radial velocities) angular

momentum is fluxed to time outer parts of time sphere creating a vertical shear. As tile

shear becomes stronger, with eastward zonal velocity towards the outer boundary and

westward flow towards the inner boundary, the anticyclones can not survive against
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Figure 5.1: The WVeakly, nonllinear run: Ra -x 1.5E 5, Ek x 4E - 4, Pr xx0.5. (top)
Sniapshiots of thle ceplatorial st.reaifinctionu in titne. redl is cYclonic rotation and( lute
is ailticNcloii rotation. (bottomn) The miaxiiiiim of the equatorial streamfinction ini

tillie.
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Figure 5.2: The eddy momentum flux divergence and the viscous terms at time
t = 100 (corresponding to Figure 5.1).

the shear and only the cyclones survive. Then the system goes into the second regime

which can be seen in Figure 5.1. The cyclones continue to propagate eastward with

nearly the same phase velocity as before (see Figure 5.8).

0.04

0.02

-0.02

-0,04

Figure 5.3: The contribution to the eddy momentum flux divergence and the viscous
term from fluxes perpendicular to the axis of rotation at time t = 100 (corresponding
to Figure 5.1 and to Figure 5.2).

In this second. weakly noiilinear, regime the amplitude of the flow oscillates until

the nonlinearities act to bring the flow to a stable state. This behavior is similar

to the behavior we have found in our quasigeostrophic two layer model (chapter

7), where once the nonlinear contributions become significant the solution oscillates

around a stable state due to the eddy-mean flow interactions (see analysis in section

7.4). In contrast to the quasigeostrophic inviscid model here viscosity also plays a

role in inhibiting the growth, and the balance is between the eddy fluxes transferring

momentum to the outside to the viscous fluxes which flux momentum inward. Figure
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Figure 5.4: The evolution of the u.' fieldl in the wea kly nion linea r run. top: snapshoit s
of te a fied ol th eqatoial lan durng ileliiiear (left) andl we,akly*N olna

(right) stages: bot tom: the evolution of' tile mnaximluln of thle T1 and(1 U' ColjI)ollenl Is of

lhe zoinal velocity in t ine. The radlial dlep)endence of a is shown in Figure 5.5.

5.2 shows the vertical and ineridional contribti ons to the eddY flux divergence and

he viscouls tri.which after thle inst abili ty ar(o close to bl)anieU. D uring th le growthii

stage the viscous5 contribultion is smnall and the eddy fluxes contribute to the growvth of'

the mecan zonal velocitv ". Figure 5.3 shows cointribut ions of' lie eddyl flux (divergenice

and the viscous terins. fromn fluxes actiiig in the (direction perpeidicuilar to thle a xes

of rot ation.

It is usefUl to look at the zonal Nvelocit,N du(inig t his iinst abilityv and transition

between the linear andl nonilinjear reghnies. W\e diVide the 70ona] VelOCity inlto tNVo

p)arts, the zonal inean and the part not containing the zonal meoan so dhat

ut = i(r.0) + u!(r.9.O )). (5-1)

Figure 5.4 ( bottoin) shows that the growth of u', and wvith it tIme outwardI flux of

angular mionientun. lprecedles the growthI in Ti. Th lerefore it. is the flux of anugl a r

iiointuini outward which contributes to the dlevelopmnent of the inean zonal velocity

T1. The amuplit ude of thle iean veloc-ityN always follows the behavior of the zonlal lY

varying componenit meaning that the outward flux of angular inomentuin is causing
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the development of tile zonally averaged component and consequentially the shear.

Once the shear is developed the anticyclonic spiraling vortices which were part of

the linear solution disappear and only vortices in the direction of the shear survive.

These cyclones are still tilt eastward being in balance between the eddy and the

viscous fluxes. Figure 5.4 (top) shows the structure of u' both (hiring the linear stage

and the nonlinear stage, and in both cases the structure is similar (only with different

amplitudes and a overlaying lower mode in the initial stage) and again consistent

with the linear calculations of Zhang and Schubert (1997). The radial structure of

the shear is shown iii Figure 5.5 for the stage after tile weakly nonlinear system has

reached equilibrium. As seen in Figure 5.4 in earlier stages the zonal mean velocity

oscillates around this state until reaching the shear which is in balance with the eddy

and viscous fluxes.

The structure along the direction of the axis of rotation is consistent with the

structure seen in the fully turbulent case (Figure 4.13). The Taylor-Proudunan con-

straint (with the anelastic wdjustments - section 4.3), allows small variation in the

direction of the axis of rotation and therefore both the initial anticyclones and cv-

clones, and tile later stronger cyclones extend through the planet forming columns.

Figure 5.6 shows the streamfunction on conic surfaces at different latitudinal angles

for the weakly nonlinear regime at the stage after the instability. The conic surfaces

vary in intervals of 10' in latitude, showing how the cyclones move outward ill lat-

itude such that the cyclones are always in equal distance from the axis of rotation,

amid therefore are perpendicular to the equatorial plane, forming columns.

In this section we have explained the mechanism leading to the superrotation

through the flux of angular momentum and the transition of the linear modes. This

weakly nonlinear regime allowed us to connect time linear solution as shown analytically

by Zhang and Schubert (1997) to the full nonlinear solution we see in the GCM. In

the more turbulent cases the modes are not distinct but the general structure with

the cyclones on the equatorial plane and columns extending throughout the planet

persists. Another question raised by the turbulent model was the mechanism driving

the waves seen on the surface of the planet. These waves seen in Figure 5.7 are

embedded within the mnean equatorial superrotation and have phase lines which are

tilted eastward in both north and south hemisphere with a maximum at the equator.

The weakly nonlinear model explains this feature, since superimposed on the mean

zonal flow (Figure 5.5), there is a contribution to the zonal velocity from the u'
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Figure 5.5: The z.onal mneani componlent of the zontal velocity onl the equatorial planie
alt er t. ie elc t has reachiedl quasi-stca.N st.atec (I 110) inl Figure 5.

compilonenlt (which is not niecessar ily we(ak) and1 a.ssociate (N1vithI coluinis. Due to the

spherical geomeit rY of thle surface, and1 the eastwardl tilt inl Ohe columns, the( surface

zonial vvlocitY resul t in g fromi thle columniIs at tl( equa1 it or (Wu inl Figure 5. 1) would

he niore eastw~ard than thle zonal velocitY (uit) at the outcrop of thle s,amei( columin.

Therefore thle phlase line ol th1ei colum eirii(xtend( ed to thle s urbice of't ilie sphere has

ani app~earanice of a, Nvave wit.h an vastward1 benid inl its phai~se line. In the turbulent

miodlel t here are no (listinict phase lines but since thle columnils appear In a tuirbulent

Form in thle interior, their it' comonient is mianifested to t lie surface with the wave

structure ap)peara.nce. As mnent ionied in chapter 1 . waves with a simiila r appearance

with curved p)hase line emlbedded in the superrotation have been observ'ed onl Jupit.er.

These waves had a smaller latituintal extent hut as we will show in sect ion 6.1 thle

latitudinal extent is affected by the vertical extent of the model. Therefore wve p~ropose

that thliis miiight be a, plausible iechluisli for t he Waves alt houghi thle waeeg iof t lie

observed waves is less than the resohution of our niodel. Note that for high Rayleigh

nunmber exp)erinments thiese p)hase lines b)ecomie less ap)parenit. Inl add(it ion since Wt is

stronigest radiallY (ignoring the anelastic effect for this argumnent ) towards the center

of the colunm. thlen the Wi 01 comonient is st ronigest at thle outcrop of the counis to

the surface. giving the appearance of stronger jets at mid latitudes. B3oth w\eakl.\

nonilinear and fully t utbulent surface zontal velocities can be seen iii Figure 5.7.

The existenice of the waves ini the fully nonulinear case shows that the same general

mechanism exist.s inl the fully\ turbulent (ighier ReYniolds number and/'or lower Ek-

miani number) cases. Ini chiapter 6 we (iscus5 the sensitivt to these paramieters and(
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Figuire 5.6: The 2D streamnfunction on conic surfaces of constant latitudinal angle.
Snapshots correspond to t =140 days in Figure 5.1 and show that the cyclones seen
in the eqnatorial plane are cyclonic columns extending throngh the sphere.
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Figure .7: W\avvs vinble(Mcd( inl t he eqluatorial s urface zonal 1x-clocit * N' tu/s) FO r t Iew
weakl * nonlinear case (Ra =. Eh- =, P'r = 10). and a fullY turbutlnt case (Ha
3E6. Ek = 1.5E - 5Pr = 10).

show t hat for lower Ekinan numblers tile flow dlevelop)s iniore coluns and t heref ore

lie eqluat orial slip)errot ation aippears smioothler. We fin11( also thia. when going fronti

at 2' resoluion 11 run to a 1' resolution run. th lIa tituiunal extent of thle equiaorill

suplerrotdat ion i s redlucedl. W'e eniphasize t hat. the waves t hat appear onl tile surface

are su1plerimp losedl oil al vi ast.wardl Zonal licail velocit *v.

WXe have exp)lainied t heref ore the inechaniisini for theo eqluatorial supJerrotat ion basevI

oi1 the( weakly' nonlinear runs. Tis inechanisin however relies onl the tilting of t lie

coluins for~ the outwardl flux ofiangular inioinientum11. anid ind(irectlyon thle propagationi

of thle p)ertulrbationi eastwardl. In thle nevxt sections we discuss these processes inl

111orc dlet ail using different iiiodels . WVe beginl with ita sun lpIe 1iiodcel to 111(derstanld tOli

nuiechimiismu for thle eastward pro)pagationi of thle coluiils.

5.2 Single Column Barotropic Model

Ill Order to 111dVIrStil tilie dlnitallics of the collilil s we see fil tle tulrlilent flow wev

turn to a muilch simpler model. Since we have shown in chapter 4 that the int erior- us

c lose to b)arotrop)ic. anid t1li flow is aligned with i t( rot at ion axis. at natuiiral sYstvn'i

in which to describe a single cohlun model will be a b)arot ropic systemn inl cylindrical

coordlinates. We follow a sinilar dlerivation (lone bY Ingersoll and P~ollard (1982)

where t hey have at scale separation between the scale of the coluunins and the size of'

lie domnaini. Rewriting (2.8 - 2.10) inl cylindrical coordiniates (which alignls with thle

sphei(rical sYstemn at, 9 0 with replacing ttlieineridlionlal coordlinat e wit h z anid inot ing
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that now 7 = 7) (r z)) gives,

Du uw10Dt I' 2  - 96 (5.2)
Dt r r 0o

Dv 034?Dv O( (5.3)Dt Oz
Dw u2 O<Di"-+- + - + 2 - (5.4)
Dt r Or

Note that we are not using the traditional cylindrical coordinates, to be consistent

with our previous notation, so that u is the azimuthal velocity, u) is the radial velocity

and only v is redefined as v = ,d (but locally ol the equatorial plane coincides with

the spherical form so that dh = r(d). In this system the Coriolis terms parallel to
the rotation axis vanish and we have used the anelastic potential as defined in (2.23).

The mass equation 2.5 gives

T- a + cfl iv + ' W a +  O T = . (5 .5 )

We scale time by the a(lvective time scale, but where there is a length scale separation

between the local length L and the domain radius r0 so that L K< ro. Then for a
small Rossby number to the highest order when cross differentiating (5.2) and (5.4),

subtracting them and adding (5.5) we get that

D [Ow0 (ru ] + Z r [p + a (PV) 0. (5.6)Dt O(Ib. Or p ( r O

The term is the square brackets is the vorticity, and the terms on the right are the

contributions to tile vorticity from stretching and the variations in the mean density.
This expression therefore will describe the vorticity of a single column within the

sphere as shown in section 5.1. This system resembles a quasigeostrophic system,

although (5.3) is different. Ingersoll and Pollard (1982) show this equivalence using
the ratio between ratio of cylinder and the ratio of the sphere as the small parameter

in analogy to the Rossby number in QG.

At the limit of small Rossl)y nml)er the quasigeostrophic equivalent scaling of
(5.3), and (5.4) will give to the highest order

7) 1 0q5 1 U (.7
2r 00 ' 2 Or' (5.7)
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Figure 5.8: left,: hie relation c( k) from eq. (5.14). and tice Hovitioller diagram 1'1o0ni
thle wveakly nonlinear runm Nvithl the phase sp)eed of .5I suplerimposed.

so~ that thle allelast ic potontial is thle gpostrophI1ic strmeanmif inlction. We assun cmi a

,51i state as shown ini sectioni .5.1 where thme flow develops a b)asic state TI(r) and a

pertuirbia t.in whvich (I all be dlescrib)ed lit st rean i iniction0 (5.7)

+ 2Qe: (r. -- c.k~u)(w

where k is Ib leZonal wave nuumber anid aT is time frequencY. Foillowing (5.7) the velocities

therefore b)ecome

it ik(O (t)o~t (5.10)

-- c .kr t (5.10t)

Then to the ighiest, order assuming dhe mean flowv is larger then the p)ert urbat ion.

(5.6) and( (5.3) become

(H () [+r( -)~ __ !- (t']) + u 2O - _Q p 5.12))

W\e turn now to our nmummerical simmulations Where we have seein that on t.he equat.orial

plane dhe icridional varialtions in thle st.reanifunction are small (Figures 3.9, and
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4.13), and therefore to make this system separable we assume that the right hand

side terms containing the variation in the meridional direction are negligible. From

(5.13) this is similar to assuming the zonal wavelength is small compared to the

radial wavelength, which leads to having the streamfunction v independent on z so

that V, = 4 (r) only. Thus the flow oil the equatorial plane can be described as a 2D

streamfunction. We have therefore set an eigenvalue problem which can be solved to

find the phase speed. The phase speed will describe the propagation of the columns

on the equatorial plane which we have seen in tile previous section. Alternatively, we

can do a local estimate for the phase speed by using tile local numeric values we have

for the shear and streamfunction at the radial location of the columns. We then get

a local estimate for the phase speed as function of the zonal wavenumnber

__~Ir (-c)_]4 + TI ~(~_r
k = i) rr I _ L (5.14)

where r,. denotes the radial location of the maximum of the zonally averaged equa-

torial streamfunction (the radial location of the columns). In Figure 5.8 we show

c(k) for the weakly nonlinear run presented in section 5.1 calculated iii this method.

We find that this gives an inverse relation between the zonal wavenurnber (nuiber

of columns), and the phase speed. Figure 5.8 shows a Hovmoller diagram of tile

equatorial streamfunction around the radial distance of the columns. We see that the

columns propagate eastward at a phase speed of 51m/s. Using this value in Figure

5.8 corresponds to a wave number of k = 28 . The number of columns in the model

is 18 however given the rough approximation of this model (mostly assuming inviscid

dynamics) it might be a right ball-park number. More importantly, (5.12) predicts ai

eastward propagation of tile columns. It is important to note the similarity between

(5.12) and the barotropic stability equation on a beta plane (e.g. Pedlosky, 1987),

where the term of the radial derivative of the mean density acts as the effective 13.

Multiplying (5.12) by T5, and integrating in tile z direction (assuming as (iscussed

above that the streamfunction is independent of z) between the places the columns

intersect with the surrounding sphere denoted by -h and It gives

(TI -c)[ r + [ 0 (5.15)
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Figure 5.9: The effective 3 13(r) (5.16) as a function of radilus for both Anuelastic and
Boussines(I cases.

where

B3(r) 2Q- 1 (5.16)

Al Jiidh(5.17)

B(r) therefore is the effective 3, and is a function of the radial distance inl the sphere.

F-or a Boussines(I fluid Al wouldl simplY grow as r b)ecomes smaller due t.o the spherical

b)oundaries of the sphere. Inl the anelastic case A.1 will have a miore compIllex b)ehavior

duec to the effect of the boundaries, and the radial dependence of pJ itself. This is

demostrtedinl Figure 5.9. Inl both cases sinceT 415i negative the effective 3 inl thle

interior of a sphere would theni lbe negative. Ingersoll andI Pollardl (1982) use this

expression do derive anl alternative b)arotrop)ic stab.ilitY criterion whvilch we come back

to ini chapter 7

To uniderstand the effect of the negative b)et.a Intuitively, one c,aui think about the

stretching of a column of fluid as it is moved closer t.o the axis of rotation. While

inl the standard spherical shiell such a column wvill shrink in length as it is moving

p)oleward, a columrn inl the interior will stretch. In the thin spherical shiell, this effect
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Figure 5.10: Left: Tile relation c(k) for the fully turbulent run (moderate Rayleigh
number as in Figures 3.9-3.11 Ra = 3E6. Ek = 1.5E - 4, Pr = 10); right: the
corresponding Hovmoller diagram with the phase velocity of c = 120L superimposed
with the black line.

is equivalent to a positive planetary vorticity gradient (which in terms of conservation

of potential vorticity is equivalent to a bottom slope growing towards the pole in a

shallow system). In the deep system the stretching of the columns is equivalent to

having a negative planetary vorticity gradient towards the poles. Here therefore, we

can think about the effect of B(r) as the background planetary vorticity only with

the opposite effect to that of a thin spherical shell. Similarly, a Rossby wave will

propagate in the opposite direction. If we go back to Figure 5.1 the set of positive

and negative perturbations feels the effect of the planetary vorticity gradient and

by conserving potential vorticity on tile equatorial plane propagate eastward. The

mechanism is similar to that of a Rossby wave except that instead of polar movement

causing negative relative vorticity, motion toward the center of the planet (poleward)

causes positive relative vorticity and positive phase speed. In chapter 7 we look how

baroclinic instability changes in the presence of a negative /3. Figure 5.10 is similar to

Figure 5.8 only for a more turbulent case. Again we find that the phase speed of the

propagation of the columns is close to the values predicted by (5.14) for the number

of columns we find in the numerical model.

We have explained the eastward propagation of the columns and shown an estimate

for the number of columns that form. However the mechanism described in section

5.1 would not work if there was no flux of momentum as the columns propagate.

Therefore we now turn to another model - 'the annulus nmodel' to understand the

reason for this flux, and preference for only cyclonic rotating columns.
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5.3 The Annulus Model

An importIant aspect of thle process leading to the superrotat ion which Nvas dIlscussed

it] the previous sectionis was t he flulx of niofrlnltimi to thle oult er pa~rts of t.Hie sphlere ol 1ic

to the spiralig in the linear modes. lIn t his sectio llwe use another simp)lifiedl miodel t

studyv this process. In ordler to repirsent the spherical geometrY in a simple channel

niodel. we use al barotropic model with var.ving height. aind use a coiifornial miapping

to niap t his channel to anl anlnulr surface (M ehita, 1998). By this we caii rep)resenlt

the beta effect with the variation in the niodel height (a dleeper interior represents

a negative phaiet ar.N vort icity gradlient. and visa versa). Using a linear slope w~ill

applroximiate a, constant beta, a conivex slope will have a b)igger valies of beta towvards

the out sidle and a conicave Slope w i have the opplosi te ef[*ect . Thle miappinig of thle

chiannel to the annuis gives the proper metric of the sphiere's equatorial p)lanle. The

model assumes coiiservat ion of potential vorticity and thle height weighted velocityv is

iiondivergenut..

WXe conust.ruct thle an nihs coordinates by using the following mappinig.

r = ~c "(5. t8)

Z=~ (3.20)

which relates the atnmilus coordhnates (.. y.. z) to cylindrical coordinates (r. (7), Z).

Figure 3.11 shows how the Cartesian square b)et.ween 0 and 2-, is mapped to lie
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Figure 5.12: Snapshots from a run usinig the H( r) profile fromn the full spherical
model (equation (5.16) at radius 0.6 - 0.8). The flow forms vortices through anl
inverse cascade that propagate eastward.

ainnulus for different values of Al and ro.

We solve the following systemn

Dt 0 (5.21)

V -(uH) 0 (5.22)

where q =±Iis the potential vorticityv. H is the dlepth of the fluid. f is thc Coriolis

number., is the relative vorticitv. and the 2D strearnfunction V., is defined so that

uH = Vx (b. (5.23)

The streamfunction is therefore related to the vorticity lbv

( V. - 1V,4 (5.24)
H

NVe (definie U =uH so that (5.21), and (5.22) combine to give

Oq+ I-V - (Uq) =0. (5.25)
0t H

or equivalently

0(+ V (Uq) =0. (5.26)
at
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Nxt We calciulat e thle scalc fact ors necessarY to t ransf orm the Cart esiani chianniel

model to the annuhus coordinate system. Inverting equiat.ions (3.18 - 3.20). and( defin-

ing a Cart esiani sYstemi ( , q~. s)gives t.le following t ransformiationi from a, Cart esian

gridl to ani anniular oiie,

2 +i ( 2 ) (5.27)

- s. (5.29)

so diat the Jacobian giving the area scaling factor fromi the Cart esian to tile annular

sYstemi is

a 0 :, 0 -)I J2 (5 .3 )

Therefore this wvill be the fact or scaling the .1acobiani ternmi in equiatijon (5.26). w.hen

ransforining tie Cartesiani sYstem to thle annular one. SimilarlY using (5.24) both

the divergence and the gradient operator contribute a factor M . so that the vorticity

equation with the t ransformnat ion factors becomes

APik A V (U,(q') -0. (5.31)

and thle potenial Vor-tl(it.v is

q1 r (5.32)

Therefore wve can calculate the change in vorticity byv solvinig for the potenitial vorticitv

flux. The scaling factor will come onlly in thle potential vorticitv.

The profile of 11(r) would therefore control thle niature of the (Il,yniamics on thme

amnulus plane. The case that would represent our fill] nunierical model Wvould be

to take the Hf profile given bY (5.16). in Figure 5.12 wve show the resulting flow

when b)eginninlg fromn an initial hiigh miodlal pe(rturb)ationi. anit azv.ro niicani vort icitYv.

Due to the negative beta offoct the flow develop)s a castwardl propagation. Opposed

to thle convect ive mlodel. since thme niodel is niot cointinuouslY forced bY smiall scale

129



90

45

time thme

0.7

0.6
0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1

Figure 5.13: Hovmoller diagrams of the perturbation potential vorticity for cases of a
positive and negative linear slope in H(r). The positive slope (shallow fluid at smaller
radius - positive 3) develops westward propagation, and the case that simulates a deep
sphere (deeper fluid at smaller radius - negative /) propagates eastward.

convection it develops an inverse energy cascade and forms large cyclonic vortices.

Note that the reason for the formation of these vortices is different from the columnar

vortices in the full model since there a inean shear develops due to the outward flux of

angular momentum. In Figure 5.13 we show Hovmoller plots from two experiments

with a linear slope of H(r), where one slope is positive and the other is negative.

The Hovmoller plots show the opposite direction of propagation of the vortices in

both cases. Where the slope makes a shallower fluid in the interior of the annulus

(equivalent to positive beta) the vortices develop a westward propagation.

5.3.1 Solving for the Eigenmodes

We now turn to look to the reason the modes seen in Figure 5.1 are spiraling. We

should make first a distinction between the convection model and the annulus model.

In the convection model energy is continuously fluxed outward, accelerating the su-

perrotation, and in steady state dissipated by the viscosity. The annulus model on

the other hand evolves from a given initial condition, and modes are not growing.

Therefore when looking at the eigenmnodes in the annulus model they will have a

finite and real phase speed. Then, the only way the eigenmodes can be complex, and

thus be tilted in respect to the radial direction, will be in the presence of friction.
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Figure 5.14: Eigenniodes for cases of linear slope in H(r) and a curvature slope in
H(r).

Linear models showing the spiraling inI the linear modes (Zhang and Schubert. 1997)

have also had finite Prandt] nubers.

We solve therefore for the saine sxstem presented in (5.21, 5.22) but add a constant

viscositY so that

+ U. Vq = V (5.33)

We solve now for the eigenrnodes by assuming a solution for the vorticitv of the form

c ik(.r-,t) o (Y). (5.31)

where r and y are defined in (5.277 5.28). A is the azimuthal wave number and c is

the liphase speed. Plugging (5.34) in (5.33). and defining an operator Al so that

(= V - IV (,,?- I I ,. (5.35)

gives ai equation of the form

mA I 0 q _ -CZ. (5.36)
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where z0 are the eigenvectors and c is the eigenvalue. Therefore in the absence of

friction, and if the linear modes are not growing the eigenmodes will be real (only

depend oil r) and there will be no tilting or spiraling of the z0 eigenmods. However,

the presence of a finite viscosity still does not guarantee that the eigenmodes will be

spiraling.

We should separate the issue of tilting of the modes from the issue of eastward

spiraling of the modes. First, in the convection model due to the outward flux of

energy, theoretically modes may develop a tilt (and therefore a correlation between

zonal and vertical velocity directions), because of the direction of energy propagation,

leading to an outward flux of angular momentum. However, in the lack of spiraling

(without considering boundary effects) this flux would be nondivergent and therefore

will not accelerate a zonal superrotating flow as demonstrated in (4.24). In the

convection mnodel we find that due to the inherent radial variation of the planetary

vorticity, due to the sphericity, it is difficult to separate the issue of tilting from that

of spiraling (spiraling of the columns includes tilting). In the annulus model since

we have no convective flux, we can not se)arate these issues either since without

variation of planetary vorticity we do not (evelo) neither spiraling nor tilting.

In order to see this in the annulus model, we show in Figure 5.14 the eigenmodes for

two cases of equal parameters, but one with a linear slope and one with a curved slope.

The linear slope is equivalent to a constant 3., and the curved one is equivalent to a

varying f3. Only the curved one develops spiraling in tile direction of the eigenmodes

in respect to the radial axis. Therefore the spiraling of the modes is related to the

radial variation of planetary vorticity.

A semi-analogous case (considering more the issue of tilting and not the angular

momentum flux) which may resemble more the convection case with energy continu-

ously fluxed outward, is a case of ocean waves approaching a sloping beach and being

refracted due to the variation iii the ocean bottom slope. The slope in the bathymetry

will result in the local variation in tile phase speed c = (gH)2. and cause a refraction

in the orientation of the crest resulting in the waves approaching the coast parallel

to the shore line. In the case of the convection model the restoring force is the plan-

etary vorticity rather than gravity, and the cause of tile spiraling is the variation in

planetary vorticity gradient rather than the surface slope, but the analogy is in the

tilting of the wave guide.

To analyze the issue of s)iraling further using the annulus model, we define the
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Figure 5.15: The angle of the spiraling of the eigoninodes as a function of tie linear
and the quadratic coefficients of the depth H(r). Angle is given in degTees eastwa.rd
of a line along the radius.

height of the fluid laver as

H (r) =- - a r -- br'

where t1o7 1. and b are constants. We then solve for the eigennodes for a series

of experiments where we vary the linear and quadratic coefficients aI. and b. The

curvature grows for larger b values. Figure 3.15 shows the results for a series of
experiments "here a and b varY for the complete range of positive depths. The

angle of spiraling (zero is no spiraling) is calculated using t1e ratio of the real and

imaginary parts of -, at. the radial point where the imaginary part is maximum for

the fastest growing 1mode. \WO see that as the curvature becomes stronger. larger

spiraling develops which in the spherical convection model will be associated with an

angular miomnentu1ml1 eddy flux divergence and the formation of superrotation. Note

that (vcl cases of b = 0 mua xy effectively have some icurvature because the wax the

gradients are defined in (5.35).
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Chapter 6

Model Sensitivity Analysis

lIn the r esuilts p)resenLted1 so far we h'lav e usedl one specific geomletric coitgurat ion

of the miodel. extendiing radliallY fromn the surface to 0.5-5 of the planetarY radlius,

and several iinoliimensional p)aramnete'r configurations ranging fromi weakly nonline'ar

runis to more tuirbullent runs. In this chapter we systematically vary ewch of the(se,

p)arameters, namnelY the RaYleigh, Ekniiaii andl Prandtl numblers, to studY their effect

oil the various featutres studied1 in previous chapters. In addoit ion we stud ,v the eflec,(t

of' varying the geomnetric configuration of the model ranging from a, thin sp)herical

Shell to niearlY a full sphere.

To p)reforml a sYstemat ic assessment of these p)aramleters, dute to the long conipu-

tatijonal time of' the 1I" resolution runs p)resenlted1 in the previous sections. we use, a

lwrresolution configuration of 2'resolution latit udinahllvadlniuial n

pressure ratio of' 2 betwveen vertical levels. WVhen comparing this configuration to thle

I'configurat ion we find that the overall structure of tie circulation (equatorial super-

rot ation. niiuber of columnlis. etc.) (loes not change significantly. However. thle smtall

scale features at high latitudes disappear. and in particular the equatorial superro-

tation is on average 5') wider latitudiniall. -Nevertheless we find these experiments

useful in studylinlg the p)aramneter regine of the model. and we point to the differences

(ue to resolution in the (discussion.

BeYond the magnitude of the forcing, we have made ini chapter 2 ivssumpjt ions on

the vertical pirofile of' the forcing. Here. we stutdY the effect of the continuous forcing

assumption made in section 2.3 bY looking at a different. tYpe of forcing. and discuss

the effec'ts solar forcing c-an have onl the conivectively dIrivenl circulation. In add(it ion

we give exampIles of interesting solutions we find during spin-up that are unstable.
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and therefore have not l)een presented earlier when discussing the statistically steady

state solutions.

6.1 From a Spherical Shell to a Full Sphere

In previous chapters we have used a configuration in which the model extends radially

down to 0.55 the radius of the planet ('-- 12 Mbar). In chapter 3 we discussed

this choice which is deeper than what has been done in the previous Boussinesq

models, and due to the complexity of the interior thermodynamics and the resulting

MHD effects, might even be beyond the relevant regime for Jupiter (although this is

controversial). However, the goal is to study a system where the vertical scales are

compara)le to the horizontal ones, and to be in a regime where the location of the

bottom boundary does not put constraints on the dynamics. In this section we will

vary the depth of the model and study its effects.

Wc begin therefore with varying the geometry of the model by moving the location

of the bottom boundary. Since both Rayleigh and Taylor numbers depend greatly

on a depth scale (which we take to be the vertical extent of the model), then instead

of holding the Rayleigh and Taylor number constant in these experiments we hold

directly the viscosity and heat flux constant. Perhaps the best parameter to keep

constant in such experiments would be the ratio TaPr which was shown in

section 4.5 to characterize the dynamics and has the H 4 dependence of the Rayleigh

and Taylor number cancel but still has a H2 dependence on the total deI)th. To keep

tile experiments simple we held constant the viscosity and heat flux directly.

In Figure 6.1 we show the zonally averaged zonal velocity for a meridional section

(similar to Figures 3.9) for a series of experiments where we vary the location of the

bottom boundary. We denote by D the ratio D =-T where rt is the top boundary

and rb is tile bottOll boundary. The range of the experiments is from a relatively thin

shell (still has three orders of magnitude variation in density) occupying 10% of the

radius (D = 0.1), to almost a full sphere occupying 93% of the radius (D = 0.93).

For numerical reasons we cali not reach a singular point in the interior, but higher

ratios are achievable with smaller time stepping. Jupiter is believed (Guillot et al..,

2004) to have a solid core occupying the inner 10% of the plaiet radius. This series

of' plots shows that the superrotation is robust for most runs, though for the runs

with small aspect ratios the superrotation has a smaller latitudinal extent. For the
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D=0.10 Dm0..18 D-0.22 P D-0.25 D-0.33

D=0.39 D=O 47 D=0.5 D06

D-0.70 D.0.78 D.0.86 D-0.93

Figure 6.1: The zonal inean zonal velocity as funict ion of model depth. D 'is

the total dlepthl where' rt, is the top) bouldarvN al(d fb is the bottOtll b0o11idarT- Red
c-olors are eastward velocities and1 blue colors arc westward1 velocity. Thle miagnitudle
of the eastward1 velocity call he seen in Figure 6.3.
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Figure 6.2: Location of columns (blue) in terms of the fraction of the radius covered
tby tihe model as function of model depth. Thle dashed blue line is tile total depth
of tile fluid. The red dots are tile ineridional extent of equatorial superrotationl as
function of model depth. Each point is a numerical experiment ran to a statistically
steady state.

thinnest case (D = 0.1) we do not find superrotation, perhaps because there wasn't

enough resolution for formnation of colunins; or, since X de eedoltedpho

the domain, and decreases with depth, then this thinner case may be in a parameter

regiine where rotation is not dominant X < I similar to the case of slow rotation. As

can be understood from our analysis in chapter 5 tile smaller latitudinal extent is due

to the columns being closer to the outside due to the smaller overall depth. However

as the model becomes deeper the columns develop further from the bottom boundary.

This shows that for a shallow mnodel tlhe choice of tile location of the bottomn boundary

sets the width of the superrotating jets, and perhaps the depth of the dynamically

significant region call be therefore deduced from the observations of the jets III tile

outer atmosp)here. Calculating this depth based onl tihe observations of Jutpiter and

Saturn gives a bottom boundary at approximately 0.07 and 0.2 respectively. Previous

numerical convection models have chosen a shallower domain than the one used in

previous chapters and indeed had a narrower superrotating jet. Note that even if

the dynamics are confined to a relatively shallow domain, it still will contain most of

variation in density an(t pressure seen in the deeper model we have beeil ulsing, and it
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Figure 6.3: Number of columns (blue) and zonal velocity in tensity (red) as funiction
of, niodel dlep)th.

WoUldl have b)eenl harder to idenitif. the mloieehanismts driving these d(iiuamics wvorking

with only the shallower (domain.

An interesting feature is that as the model gets dleep)er. ap)proaclhing a full sphere.

the columns (10 not move significantlyv deeper and the resulting width of theo sup)er-

rotation does not extend( mutclh beyond 50' in lat itutde. This is shown tmore e,xl)lic-itl.\

inI Figure 6.2 which shmowvs on the left (blue) gri(d thme location of the columns (taken

as the averaged radial location of the mnaximunm in equatorial 2D stroanifunction) as

functionm of thle aspect ratio ( D) . Each p)oint rep)resent s at numerical exp)erimlent,. anl

he dashed line Is the total depth of the fluid. As the aspect ratio grows (ntiodel gets

dleelper) the location of the column drifts slowlyv iniwardl but becomes furt her away from

the bot tom boundary. Looking at the equatorial plane wve can idlentify the columns

and1 similarly' to the standard case shown in chapter 2 they arc all cYclonic.

The nuimber of colunins (estimated by a Fourier analysis of thle 2D st reaniftinct ion

on the equatorial plane) around the 360 0 equatorial p)lane is higher for smaller aspect

ratios and is fairly constanit as the model becomes (deep). This is shown inI Figure 6.3.

However tble intensitY of the columns and thme resulting superrotation grow with dlep)th

even though forcing is constant. This is despite X becoming b)igger as the mtodel is

dleep)er.
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Figure 6.4: \ solution with multiple columns. This structure appears (luring spin-up
but in time will reduce to having only cyclonic columns. left: the equatorial stream-
function containing both cyclones and anticyclones. middle: the total momentum Pu
in ineridional section; right: The zonal velocity in a ieridional section. Meridional
fields are of snapshots taken at 17 days from spin up and the equatorial slice is at 25
days.

6.2 Multiple Column Layers

In Busse's original heuristic picture (Busse, 1976) for multiple zonal jets driven by

interaction between cylinders, he suggested that multiple columns at different radii

from the center may interact to cause alternating jets. In this picture the cylin-

ders were confined to the region outside the tangent cylinder surrounding the core

and extended throughout the planet. The discovery of jets at high latitude (Porco

et al., 2003) later overshadowed this suggestion since this would require the layers of

columns to extend deep into the region contained within this tangent cylinder. Only

if the internal region with no dynamics would be very small could such a scenario be

plausible. None of the linear models, or the numerical Boussinesq mnodels have found

solutions with multiple column layers. In the previous section we have shown that

even when extending the model alnost all the way to a full sphere we find only one

layer of columns and they are located at an equal distance from the axis of rotation.

In this section we show that we often get such multiple columns during the spin-
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111). liowC(cr evenitliallY (h1c to shear t hey (Ii Sill)ear and( wc( 1111(d thle solii ns with

one (domninant layer of column at anl equal distance from the axis of rotation. Figure

6.4 shiowvs onl the left anl equatorial slice whlere we find anl inner set of anticYclones

(blue) and( at at greater radlius a, set of cYcl ones (red). Lookinig at different slices show"

t hat. simxilar to the case of' Figure 4.13. these feat ures extendI as columns. lparallel to

the axis of rotat ion, to the outer levels. The middle panel shows the zonal velocit,Y

withI mult iple east-west zolial jets at tile surf ace. S uchita pictuire would1 be dlesirabile

for thle J1upiter case with a wide superrotating jet and then alternating jets at, high

liati t ud(e' h owever we find t hat suc(h at sceilario) is not. st able and( tihe 1ii1l tip)le -oin mi uls

eventually dlisapp)ear. It is interesting that at. this stage Tm. is nearly constant along

the axis of rot ationi, mleaning as dliscussedl in sect ion 4.3.2 that. the b)aroclinic vort icit."

prodluct ion has at near equal and( oppositc conltrib)ution from eiitropvy aind prssr

filuctulat ions. In) titile tle interior p)art of the column becomes more barotropic andl

le solution looks like Figure 3.9. Thle p)aramleters for the run p)resenltedl here are

tie saiiie as thle ini Figure 3.9. and are of instantanieous fields. WXe find that, as we

(decrease the viscosity such solutions survive for larger times, despite the inctrease in

muagn itutde, or 0he circulat ion anid veric ial shear. It is possib)le that therefore that

exp)erimlents withI higher resolution, where we can utse smaller viscosities would have

stable solutions wvith such multiple columns anid surface alterniat.ing zonal flows.

6.3 Model Sensitivity to Nondimensional Parame-

ters

In this section we look at the mnodel setisitivitY to Rayleigh, Praildtl and Ekmian

numbers. Due to thle simplicit ,y of thle mIodlel. and t he itse of uniform v'iscosi ty andl

diffusivity coefficienits the model is controlledl by only these three p)araimeters. Al-

though these nondiniensiona.l parameters define thle system, since the GCNI is nlot

iiat urallY writteni in ternis of these p)aramlet.ers. we find it usefuil to studyl bothI tble

effect of the nondiniensional parameters and the physical paranmeters that compose

heou, niamlelY the viscositY. diffusivity and heoat flux. There is anl obvious overlap

between t hese two ap)proaches. b)ut as we show theY are not redhulndant and it is hielp-

full ini looking at (different slices through the p)aranmeter space. For most exampllles wve

keep) the rotation p)eriodI constant (9.92 hours), and therefore Eknman number (and
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experiment Ra Ek Pr X-1 Ra - Pr-1 Ek2  varying param. range color

Ral varies 1.5E - 4 10 varies Ra IE6 - 5E7 red

Ra2 varies 4E 4 10 varies Ra 5E5- 2E7 bluc

Ra3 varies 8E - 4 10 varies Ra lE5 - 1E7 black

PrL 3E6 4E - 4 varies varies Pr 0.8 - 12 green

Pr2 varies 4E - 4 varies 0.048 Pr 0.1 - 5E3 purple

Ekl 3E6 varies l0 varies Ek l.5E - 4- 1.5E - 3 magenta

Ek2 varies varies t0 0.048 Ek 1E - 4- 1.5E - 3 gray

EU 3E6 varies 10 varies Ek 7E - 5- 7E - 3 orange

Table 6.1: Table of )arameters for numerical experiments in chapter 6.

alternatively Taylor number) will depend only ol the viscosity. The results will be

presented in terms of Ekmnan numbers and not the Taylor numbers but can be easily

converted. For convenience we write again the nondimensional numbers

Pr=-. Ta- 4Q2jj Ra = BH' Ek= " (6.1)2  
- 212

where H is the total vertical extent of the model, and BO is given by

Bo = Qo(H0) 12(6.2)Bo T H

where the subscript 0 denotes the top level. We try and explore a parameter regime

as wide as the configuration and computational resources allow us. Ideally we would

like to increase Rayleigh numbers by decreasing the viscosity and diffusivity while

keeping reasonable heat fluxes, and therefore make the model as turbulent as we could.

This however is limited by the grid scale. For example the standard 1 resolution

configuration has 360 x 160 x 120 x 6 -- 4E7 computations per time step. Time

steps are small (typically 5 seconds) due to the convective nature of the system, and

therefore calculations are computationally demanding. We find it therefore useful

for these series of numerical experiments to use the low resolution 20 runs. These

runs are presented in Table 6.1 where only Ral are 1° resolution cases. An important

component of this analysis is the effect of the rotation period. This has been discussed

in both sections 3.1 and 4.5, and therefore we will refer to those sections for this

discussion. We will use these results, though., in our discussion on the effect of the

Ekman number.
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6.3.1 The Rayleigh Number

We b)egin wvith experiments where we vary' the RaYleigh niilner while holding the

Prandtl and Ekmnan wnmbers constant. The Rayleigh number dIep)ends oni all th irve

phYsical p)aramiet ers (viscositY. diffusivitvY, and hicat flux), and therefore since rot at iol

period (9.92 hotirs) is lieldl constant, the 11(t aconstant. Ekinan mnmber imtplics at con-

stait viscosity. Tlhen ini effect in this set of exp)erimrents only the amplitude of' the

hecat fltix is varied. kVO repeat these experiments (Hal - 3 see t.able 6.1) for (difFerenlt

values of' Ekinan numbers (lenoted in Figure 6.5 with (differenit colors. Two dlegree res-

ohition rtins are denoted by diamonds, while one degree resolution runs are denot,ed

b,~v squares. Eachi numerical exp)erimnent presented her,. denoted bY a single (lot., has

been run to statistical steadY state andl dat a has beeni taken 1roin thle instantaneous

fields.

The left panel ini Figure 6.5~ shows that ats the Paylevigh numbller increases the

magnitude of the equatorial superrotation increases as well. A stronger heat flux

p)rovidles inore pot.ential eniergy (f'roit the convection) to the syvstemti resulting III at

stronger kinetic energy and superrot.atioii. For thle more energetic runis. thle curves

level off reaching possily an asymptotic linit. Christensen (2002) suggestedl a linear

relationship when looking at the RossbY nuniber as a funictionm of the hevat flux. Runs

of* simuilar Rayleigh number will have-( higher velocities for higher Ekinan number.

though the iriodel resolution seems to possily have an imlpact. as well. This shows

that the nmagnit ude of tlie slperrot.at ion in our runis does dlepenid on the iniagnit ud(e

of the forcing. however this dependence inay decrease for high Rayleigh numbers as

indlicatedl part.icularlY bY the higher resolut ion runs (red). InI section 4.7 we have

shown t hat although this mnagnitutdoe (does depend on the choice of* the RaYleigh inumi-

ber it is still consisteiit with mnixing length theory estimates for the magnitude of the

velocityv as function of the forcing. For the whole range of RaYleigh numbers that

we have experimienitedl withI we have found t hat the convect ive structures and( niecdia-

nistis studied in chapter 30 are consistent. InI Boussinesq., Cartesian. Rayleigh-Blenard

convection experiments Sprague et. al. (2006) have found that as Rayleigh nuitber is

increased1 the flow within the colunmns increases in strengthl, as in our experiments,

but leading evenit ually to a b)reakdown of the TaYlor colunins (flue t.o enhianicedl lateral

inuxing. InI ouir exp)erimnts we have not found t his to hiappen. and act uallvN have

fouimd the ratio of thle vorticityv of thme columns to the background vorticity to grow

with HiaYleigh itnmber. wvith inore profound columins. However, even if the columnar
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Figure 6.5: The model sensitivity to Rayleigh number. left: The magnitude of equa-
torial superrotating zonal velocity Jm/s; right: latitudinal extent of equatorial su-
perrotation Idegreel;

structure would break for somte higher Rayleigh number, the convective plumes will

still be aligned with the rotation axis (as in the Sprague et al. (2006) experiments at

high Rayleigh number), and therefore uich of the angular momentum flux and the

mechanisms described in chapter 5 will still hold.

The equatorial superrotation on Jupiter extends roughly to latitude 17' and on

Saturn to latitude 30' (Figure 1.1). W,e have shown in section 6.1 that in our model

the latitudinal extent can depend on the depth of the domain for shallow cases (Fig-

tires 6.1, 6.2). In Figure 6.5 we show that this latitudinal extent depends on the

Rayleigh number as well and runs with higher heat flux develop a narrower equato-

rial superrotating jet.

Extrapolating these results to the regimes relevant to Jupiter and Saturn is dif-

ficult since the model (eddy) viscosities are many orders of magnitude larger than

mean imolecular viscosities.Therefore to maintain a large Rayleigh number we must

compensate with a larger heat flux. If one used the Rayleigh number with the eddy

viscosities to calculate the actual heat flux, the resulting flux would be many orders

of magnitude too large.

A useful measure which eliminates the dependence on molecular parameters will

be X - Ra . Pr-'Ek2 . We have shown already (section 3.1.1) that this paramieter

determines the level to which the convective plimes are aligned with the rotation axis.,

separating therefore between the rotationally dominated convection to gravitationally

dominated convection. Using the parameter X allows comparing a larger set of

numerical experiments. For most cases (all but Ek3) the rotation period is constant
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an1d( thlerelore- \ I is al mieasu re of, the muagn it ude of th le convect ion. In thle uipper

panels of' Figure 6.6 we look agaiii at the imagnitud(e and latitudinal extent of the

superrot at ion. The upp~jer bound of - values is the Ilitlit. where t he convect ionl

will not b)e alignied withI the rotationi axis. At that p)oint no conhvect ion columinis

will appear aind the whole inechanisin for superrotat ion dlescribedl in chapter 5 wvill

break. As seen in Figure 4.11 at this point the equatorial flow would rap)idlY switch

f'rom sup)er-to-subl rotating. The lower limit of ,-' is when conivectioni is weak and

is hilnitedi bY eit her the critical value of convection (3.11) or numerical linitation of

he eddY Ekuian numbler. It (-aii be seen onl thme left paniel t hat the biigher resolu tion

experimients (-an reach lowver \ -' values since the higher resolution allows havino a

smaller eddyv viscositYv. The impIortance of this is that thevY are supereritical for lower

\Inumbers, and( seemi to reach at point where more turbulent runs (10 not necessarlY

have stronger equatorial velocities. This is seeni also hut. t.o ;i lesser extent in thme 2)"

resolution runs. Such a scenario will inm that the velocities In our niodel, which are

011 t lie order of inagnit ude( oF t lie windi(s ol Ju pit er andl Sat urn. might be miore robust

than iniciatedl by the slope in Figure 6.3.

III thle lower left panlel ill Figure 6.6 shows the (dominanit Nva-venumibeir for the

streanfiiction onl the equatorial plane. This wvill serve as an approximation for

he numiber of columns surrouniiniig thle interior core. The results indicate that the

further the niodl is into the rotationally- dlomnatedl regimne. thle more convectioii

columnis Nve findl aroun(d the equatorial plane. As at caveat, note that sill(-( there is

it clear separation between the high and low resolution results thle numerical values

are affected bY the model resol utionl. Thlese resul ts inght iIIlp.v that going to hiigher

resoliution nins1 with lower Ekmnan numnbers will lead to significa(litly miore convection

columunar structures which will result in at higher frequencY waves o11 the surface.

The waves observed oii the surface of .JupIiter (Reuter et a-L., 20071) have a :300 kml

wavelength which is currently - of the resolutonm of our runs. Therefore it is hiard Ito

idlentif'v our resuilts wvithm the observed waves: however the sp)at ial resel)ance (crests

that are cuirvedl eastwardl and( centeredl at the equator). the p)hase speed wvhich is about

equal to the inean zonal velocitY (ats ini the model). and this result suggesting that

te nuImbier of columns (and thlerefore result ing waves), will inicrease wvithI resolut ion

brings us to hypothesize that the observed waves might be a surface manifestation of

fimner structutre convection coluninsi.

'I'he lower righit panel ill Figure 6.6 compares the full kinetic eiiergy to that of the
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Figure 6.6: Modlel dtependence on k = Ra. P-lEk'. Run color codhe corresponds
to parameters in table 6.1. upper left; latitudinal extent of equatorial superrotation
Idegreel; upper right: magnitude of equatorial superrotating zonal velocity [M/Sl;
lower left: mean number of columns aroun<t the equatorial plane; lower right: ratio
of total kinetic energy to the kinetic energy of the non-zonal componecnfts.

non zonal complonients. In all cases we find that the zonal kinetic energy dominates.

Although it is hard to follow a partic'ular trend for a sp)ecific set of runs, in general

it seenis that the higher energy runs have a stronger zonal compolnent in the total

kinetic energy. Some of the sets of runs reach a maximum beyond a specific heat flux

but determining this will require more runs.

We conclude that inl the parameter regime we have studied the Rayleigh number

does affect both tihe ainplitude aid the latitudinal extent of tihe jet. NVe may expect

that runs at higher resolution which will be capable of higher Rayleigh numbers and

lower Ekinan numbers will not dtependl (Inagilitude wise) oil the Rayleigh nmbfler aid

will have (even without the effect of the bottom boundaries) a narrower sup)errotation.
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I.igure 6.7: The dlep)end(ence oil Prandd number with constant heat flux wdifrusix-it.,N).
l,f't: ratio of' total kinetic energy to thle kinetic enuergy of t he non-zonal compiJonenits.

right,: magnitutde of equatorial sup)errotating zonal velocity 1/..

6.3.2 The Pranidd Number

TO st uidY the ( dependlence onl tile Prandtl n iumiber wve p)erformi t wo sets of experimnts.

InI oine we hiold the Ekinmn and Rayleigh numbers conistant andl vary the Prandt I

nmber (Prl ). InI this ease dliffusivitv varies and1 thle hecat flux ad.justs accordiiigly to

keep thle Rayleigh umb iler conistanit. These results have b)eeni presenlted ini Figuire 6.6

andl have a siilar offect. to holding the Prandtl numbiher coinstant and v'arying thle hecat

flux. The seconid set of, experiments (Pr~2) is holding, thle Ekinan number conist ant

ando varying the Prandtl number while the heat flux is constant (X-1 = 0.048). so

that the RaYleigh number will vary as well. InI this case. since onily difFtisi\-it.Y varies

Ho-Pr is constanit. III Figure 6.7 we look at t he results for t his e'xperimuenlt. 'fllue

right sidle plot shows on the horizontal axis both the Prandtl number (bottom) and(

R aYveigh number (top) since only odiffusivitY is \,arYing. It shuows the increase ini the

imeanl ampulit ude of t he superrotation upI to a level where beYond it. the tiieall velocitY~

renmains roughlY conistant. This plot canl be seen as anl extension of the corresp)ondling

p)lot in 1Figure 6.5 ext eninig into a region of higher Rayleigh numiber so t hat thle

magnitude of thle Velocity is no longer a funiction of the Ray leigh number. Despite the

high RaYleigh numbiers the run is nmot. iore turbulent aiud] onlY ineans that, beYond

Pr,2. f'Or thlese run paramueters. odifinsivit.y is smlall So that. tile aimplitutde of' the

zonal velo(-it.-v is insensitive to the Praridt] number.

We find that the latitudinal extenit of the superrotation odoes not odependl on thie

odiffusiv,itY. R uts withI higher Prandtl numIiber (10 hav7e a higher waveinnumber to the

equmatorial streaniffinction onl the equatorial planle. and as in the case of the zoiial
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Figure 6.8: The model sensitivity to viscosity, left.: maximum values of equatorial
strearnfunction. right: surface superrotation zonal velocity.

velocity it becoines constant beyond a certain point for high Prandtl nunbers. The

left panel in Figure 6.7 shows the ratio of full kinetic energy to that of the no zonal

components and indicates higher ratios for lower Prandtl numbers. The run with

Pr = 0.5 is the weakly nonlinear run presented in section 5.1.

6.3.3 The Ekman Number

We study the effect of the Ekman number in three sets of experiments. In tie first we

keel) the Rayleigh and Prandtl numlbers constant and vary only the Ekman number

(keeping again the rotation constant) so that we change effectively tile viscosity and

the heat flux adjusts accordingly. Ini the second set of experiments we keep the Prandtl

nunber and heat flux constant, so that when varying the Ekinan nunl)er (viscosity),

the Rayleigh number changes as well. The third experiment is similar to the second

one only varying the Ekian number by changing the rotation period instead of the

viscosity.

Beginning with the first case, since the Prandtl number and heat flux are constant

we look at the model effectively as only the viscosity chainges. In Figure 6.8 we show

the magnitude of the equatorial streamfuiction and superrotating zonal velocity as

functions of the Ekman number. We find, as can be expected, that as viscosity

increases tle magnitudes of bothl decreases. Going back to the zonal monientumn

balance in (4.20), as angular momentum is fluxed outward by the eddy fluxes, the

balance between the eddy flux term and the viscosity happens earlier as v increases,

and therefore both the superrotating winds and the rotation of the columns (correlated
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number of columns (wave number) on the equatorial plane; upper right: niean surface
7011al velo(ity of the sliperrotation; lower left: Meridional extension (latitude) of the
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to the eddy angular momentum flux) are weaker.

For the second case keeping both Prandtl and ilRayleigh numbers constant as the

'kman immer (viscositv) va,rics, the heat lix ad.jists accordinglY. Ilrefor a

higher Ekmnan number means a larger heat flux. and thus we find that the strength

of the superrot.ation increases with Ekman number, although RaYvigh number is

comstant.. This means that the strength of the superrotation is related to the heat

flux and not to the values of the Rayleigh number itself. On the other hand. as we

increase the Ekinan nulmber the number of columns. which is ('stimated bY a Fourier

analvsis of the streamfunction. on the equatorial plane decreases. This indicates that

in a higher resolution model where we would be able to reach lower Ekmnan numbers

we iaY expect to find more columns and surface waves. In addition as we increase

the Ekinan number the meridional extent decreases although it levels off for lower

Ekman numbers. FinallY the ratio of the full kinetic energy to that of the non zonal

components grows with Ekman nmber.
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6.4 The Effect of the Forcing Profile

In section 2.5 we discussed the use of an adiabatic vertically continuous forcing profile,

which does not confine the convection to the boundaries and is a way of representing

the longer time scale cooling of the planet. Other mo(lels (e.g. Heimpel an(t Au-

rnou 2007) have used isothermal boundaries and therefore forced Rayleigh-Benard
type convection; however this is an extreme oversimplification of tile forcing an(l tile

planet does not have an isothermal boundary. A similar boundary dependent forcing

2D Stn. Forcing 2D Bottom Flux

171

3D Stn. Forcing 3D Bottom Flux

/L

Figure 6.10: Comparing different forcing profiles for 2D and 3D cases. upper left:
2D with vertical forcing profile (section 2.5). upper right: 2D with bottom flux and
Newtonian cooling on top; bottom left: 3D with vertical forcing profile; bottom right:
3D with bottom flux and Newtonian cooling on top.

would be applying a heat flux at the bottom boundary and relaxing to a reference

temperature on top. We have used this profile for the discussion about the critical

Rayleigh number in section 3.1.2. Although less realistic than the continuous profile
it is worth comparing the statistically steady state solutions to learn if the result is

(ependent on the form of the forcing. Here, we compare tile results using )oth types
of forcing for both the 2D and 3D cases. As can be seen in Figure 6.10 we find that
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for the 2D experiments a bottom heat flux will cause the dynamics to be constrained
to the inner part of the sphere. For the 3D although at the initial stages (not shown)
the convection is different (plumes rising from the bottom boundary), after enough

time the profiles with both types of forcing become quite similar. The reason this
makes a difference in the 2D case is the constraint given by (3.13) which is even more

limiting in this case because of the convective plumes only rising from below. Note

that the 3D runs are of 2' resolution; as discussed in section 6.3 the higher latitudes
do not maintain the finer structure seen in the 1 resolution runs such as in Figure

3.9. All cases here are using the full anelastic density variation.

6.5 Summary

The (lee) anelastic GCM we developed and studied in previous chapters is analyzed
over a range of' parameters. Such a study is essential in order to get a feel for the

parameters of the model. Due to the simplicity of this idealized GCM the paraneter
regime is limited to mainly three nondimensional parameters beyond the geometric
configuration of the model and the choice of forcing profile. We perform sets of mi-

inerical experiments changing both the geometric configuration of the model and the
nondimensional control parameters. We find that using a shallower or deeper domain

preserves to the most part, the main characteristics of the circulation, including the
superrotation and convection columns. A shallower domain which is consistent with
some of the recent MHD estimates (Liu, 2006), would in fact limit the superrotation
to a narrower latitudinal band which is consistent with the observations on Jupiter

and Saturn. On the other hand extending the model to a full sphere does not extend
the superrotation to the poles, and beyond a certain depth the superrotation is close
to being invariant to time depth of the domain.

lVe find that the magnitude of the superrotation in our model does depend on
tile Rayleigh number for the parameter regime studied. An important distinction is
whether the amplitude of the superrotation is sensitive to the full Rayleigh number or
to the heat flux itself. The results at this point are still indecisive. If the total Rayleigh
number is key, then the use of large eddy viscosities is justifiably compensated by the

use of large heat fluxes. If on the other hand, the effect of the viscosity saturates at
some limit (still far from the molecular limit) then possibly the velocities resulting
from realistic heat fluxes will be considerably smaller. For the parameter regime
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we have been able to explore this questions remains open. We find that beyond a

certain limit the Prandtl number becomes irrelevant due to the small diffusivities,

and although Rayleigh numbers will grow for such a case, effectively the circulation

will not change. In general we find that using smaller Ekman numbers and larger

Rayleigh numbers (which are in the direction of more realistic numbers), will result in

more, and smaller scale, convection rolls and a resulting superrotation which is more

latitudinally confined.

Other possible solutions, such as ones with multiple layers of convection columns,

which currently naturally appear during spin-up, but usually are sheared apart as the

model spins-up toward having one layer of cyclonic convection columns, have been

shown. Since for the lower Ekman number cases these solutions are sustained for a

longer period, despite the shear being large, we suggest that in high resolution runs

we may find such solutions which are stable.
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Chapter 7

Formation of Multiple Zonal Jets by

Baroclinic Instability

7.1 Introduction

In this chapter we use a simplified model to look at a different aspect of the (lynarnics.

The full GCM has been instrumental in understanding the mechanism for superro-

tat ion and the dynamics arising from convection in a rotating spherical deep system.
We have seen the formation of columnar modes which propagate eastward due to the

background planetary vorticity gradient. The mechanism causing the propagation of

these modes is similar to that of a standard Rossby wave on the exterior of a sphere.
only that the planetary vorticity gradient is in the opposite direction, thus growing as

one goes to lower latitudes (the equivalent of moving radially outward in the interior

of a sphere).

The opposite planetary vorticity gradient can be thought about in terms of conser-

vation of vorticity in column of fluid. If constrained to a thin spherical shell then as as

a fluid column moves towards the axis of rotation the fluid column shrinks in length,
and therefore this would be equivalent to a sloping surface with a positive slope, as

the planetary vorticity grows, and therefore a positive 3 effect. On the other hand
columns which penetrate the depth of the planet as we have seen in our GCM (Figure
4.13), will stretch as they move towards the axis of rotation, and therefore will be
equivalent to having an opposite sloping surface to conserve planetary vorticity which

is equivalent to a negative /3 effect. Following the approach of Ingersoll and Pollard
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(1982) we have shown that for an anelastic fluid the radially varying density profile

will cause a larger magnitude negative /0. The equivalent /0 for both the Boussinesq

and anelastic cases can be seen in Figure 5.9.

We have discussed the two very different and essentially decoupled approaches used

to model the atmospheres of the giant planets (section 1.3). We have shown that the

deep approach which we have taken for our convection model can explain some ele-

ments of the dynamics such as superrotation, meridional poleward heat transport and

possibly some of the waves observed within the equatorial superrotation. However, el-

ements such as the formation of multiple zonal jets do not appear in the deep anelastic

model. Our simulations indicate that possibly a higher resolution model with smaller

viscosities will be able to produce more meridional structure in the zonal wind field.

Examples of such solutions we present in section 6.2. Nevertheless, the similarity of

the observations to weather patterns seen on Earth, and the existence of a thin but

important stably stratified layer at the top of the atmosphere due to solar insulation,

leads us to assume that there are important components to the dynamics beyond the

convectively driven system.

Therefore in this chapter we look at a simplified model which contains components

from both the shallow and the deep approaches. We use a two layer quasigeostrophic

model where the upper layer is a standard quasigeostrophic layer on a 3 plane, and

the lower layer represents the deep interior convective columnar structure using a

negative / plane. The model is shallow in the sense that is quasigeostrophic and the

jets are created by interactions of the eddies on a /3 plane. However, the presence

of the negative / for the bottom layer makes the dynamics, and particularly the
criterion for baroclinic instability, quite different than a standard quasigeostrophic /
plane model. We suggest that the interaction between the isentropic interior and the

"weather layer" drives the multiple zonal jets.

This approach can be distinguished from previous shallow type models in several

aspects. First, due to the weak meridional temperature in the upper atmosphere of

the giant planets, baroclinic instability has been assumed to play a minor role in
the dynamics of the jets. However as we show, due to the different geometry in the

interior, even a weak baroclinic shear can result in substantial zonal flows that are

stronger than the eddy field, and moreover baroclinic instability introduces a strong

meridional variability in the velocity field. The instability acts as an energy source

for the eddies, and the nonlinear eddy-mean interactions act to stabilize the flow.
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Therefore unlike previous shallow water or quasigeostrophic models which use either

random forcing or deal with decay of strong initial perturbations, leaving it unclear

how such a state can be maintained, this model accounts for the energy of the eddies

through baroclinic instability. Baroclinic instability provides an energy source, so

that energy does not have to be pumped in to maintain the jets. Other baroclinic

instability models (Panetta, 1993; Williams, 2003), require large-scale baroclinicity

strong enough to satisfy the Charney-Stern theorem, but which may be larger than

the level of baroclinicity on the giant planets.

Second, the observed winds violate the barotropic stability condition (Ingersoll and

Cuong, 1981), thus 3 - uYY < 0 at some latitudes, although the zonal winds appear to

be very stable. In contrast, all of the shallow models produce curvatures uy, which arc

smaller than 3, so that the predicted jets are weaker or wider than the Jovian ones.

We find that 0 arid uYY have similar values (thus the barotropic stability condition

is violated) arid still the jets are shown to be stable. Third, most previous model

assume a boundary at a depth of about one scale height, with the fluid below being

motionless. Although this model is not deep due to the quasigeostrophic assumptions

we show that the jets in the upper levels are maintained and are baroclinic when the

bottom layer gets deeper. Using the negative 3 assumption gives some representation

of the deep dynamics seen in the full convection model. Finally, in many cases (e.g.

Panetta, 1993) the jets are obvious only in the zonally or time average profiles, while

here tie jets are seen in the instantaneous picture as well. A main difference is that in

those models the scales of both the instability and the resulting .jets are on the order

of the RossbY deformation radius, while here there is a scale separation between the

instability which is much smaller than the jets which are again on the scale of the

deformation radius.

Several authors have used this idea of a negative 3 plane. Ingersoll and Pollard

(1982) developed a stability criterion for columnar motions inside of a compressible

fluid sphere. Their equivalent barotropic stability equation has an effective 3 which is

negative and three times the value from the sphericity of the planet. On Jupiter and

Saturn the observed winds are close to marginal stability according to this criterion.

Yano and Flierl (1994) have used a negative bottom layer 3 to demonstrate its effect

on an isolated vortex like Jupiter's giant red spot in a zonal jet, and Yano (2005)

suggested that this can effect the direction of the equatorial jet. We will show that

having different and opposite-signed 3 values in the shallow and deep layer makes the
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dynamics different and favorable for creating jets even for weak baroclinic shears.

We begin with analysis of the stability problem in a two layer quasi-geostrophic

model similar to the Phillips model (Phillips, 1954), but with the lower layer deeper

than the upper layer and having a different geometry represented by the different 0.

Unstable modes appear at high wave numbers for low shears, implying there may be

a significant scale separation between the eddies and the mean flows generated by

the nonlinear interactions and the energy cascade. Next, since the fastest growing

mode is the key contributor to the initial instability, we develop an analytical theory

for the nonlinear problem containing of only this mode and zonal flow corrections.

This truncated model which is presented in section 7.4 gives an analytic expression

for an induced zonal flow which has a multi-jet meridional structure, and which is not

limited to the weakly supercritical case (Pedlosky, 1970) so that it can be as strong

as the eddies. We show that this model can reduce to the weakly supercritical case

in section 7.5.

Then, using a pseudo-spectral fully nonlinear numerical model containing many

initial modes, we show that indeed an induced zonal flow with a multi-jet meridional

structure is generated from the baroclinic instability. The truncated model predicts

well both the number of jets and their amplitudes. This emphasizes the importance

of the truncated model which allows us to isolate the physical mechanism of the jet

formation before the system becomes turbulent. In time, as more unstable modes are
generated, quasigeostrophic turbulence begins and an inverse energy cascade gener-

ates wider and stronger jets. Once the meridional scale of the jets has reached the

Rhines scale, these jets become stable and in most cases have a bigger amplitude

than the eddy field, thus creating a multi-jet structure across the whole channel. A

complete description of the numerical experiments is given in section 7.6.

A few mechanisms govern the generation and stability of the zonal jets: baroclinic

instability extracts energy from the basic shear at high wave numbers to form small

scale eddies, eddy interaction creates an induced zonal flow with a strong meridional

variation, and eddy-mean flow interaction creates exchange of energy between the

eddies and the mean flow which stabilizes the flow. The truncated model allows us to

isolate these phenomena. Baroclinic instability tends to sharpen and intensify the jet

once it is created while quasi-geostrophic turbulence will tend to cascade the energy

into larger scales. Both effects can be seen in the numerical experiments. A discussion

of these mechanisms and its relation to the Jovian jets is given in section 7.7.
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7.2 The Two-Beta Model

We use a two layer quasigeostrophic model (Phillips, 1954), with a simple shear flow

on a 13 plane in a zonal channel of meridional width L. The layer thicknesses are

different, such that the upper layer is much shallower than the lower layer, in order to

represent a thin weather layer and a deep adiabatic interior. Although the two-layer

model is often thought of as representing homogeneous incompressible fluids with the

deep layer having a slightly larger density, Flierl (1992) argues that an isentropic

interior with a thin weather layer of higher entropy gives the same equations. In

order to parametrize the deep layer flows (Ingersoll and Pollard, 1982), we use a

negative 3 plane in the bottom layer and a standard 13 plane for the upper layer, as

discussed in section 7.1. The opposite-signed 3's make the stability problem quite

different from the classical case (c.f. Pedlosky, 1970). There is a free interface between

the two layers whose horizontal height gradient is related to the difference in pressure

gradients within the layers. The quasigeostrophic inviscid potential vorticity equation

for each layer, dimensioalized in the standard way as in Pedlosky (1987) is

a + () kP () OX, 0] [V2,p+

(-1)" F (qI - 'P2) + 3, Y] = 0. (7.1)

where n denotes the layer, T',, is the stream-function and F, is the non-dimensional

Froude number given by

F,- L (7.2)

where f is the Coriolis parameter, g' is the reduced gravity, and D, is the layer depth.

For future notation we denote the full potential vorticity in each layer as

1-I = V2,p + (-1)" F (,pl - 'P2) + 3,.. (7.3)

We will assume the simplest basic state with a uniform flow in each layer,

17 = -U ,y. (7.4)
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The total streamfunction is composed of the mean part (7.4) and a perturbation

Tn = Ton + on (7.5)

and the equation for the perturbation stream function is

a + Ua) q. + [(-I)- Fn (Ul - U,) + C" -- + J(O., qn) = 0 (7.6)

where

q. = V 2 on + (-1)n F( 1 - 02) (7.7)

is the perturbation potential vorticity and J(On, qn) is the Jacobian of streamfunction

and potential vorticity. The boundary conditions on the walls of tile channel at

y = 0, 1 are that the meridional velocity vanishes and the zonally averaged circulation

on the two walls is conserved (Phillips, 1954) so that

aT -0 , - ndx = 0 (7.8)

7.3 Linear Stability Analysis

We begin by addressing the linear stability problem in a similar fashion to Phillips

(1954) and Pedlosky (1970). Wave solutions which satisfy the boundary conditions

(7.8) can be found in the form

02 = -Y01 = 7A e ik(x - ct) sin (mry) (7.9)

where m is an integer, k is the zonal wavenumber, A is the amplitude of the wave in

the upper layer, and -y is the ratio between the amplitude of the perturbation in the

lower to that of the upper layer. Only k is restricted to be real. Substituting (7.9)
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Figure 7.1: Stability curves for the two 3 case for the vertical shear as function of the
total wave number . The contours are of the growth rate in non-dimensional units,
and the parameters used here are F = 100, F2 = 20, 31 = 10, and 342 = -30.

into (7.6) and solving the linear eigenvalue problem gives the dispersion relation

U '5s + 2F2 "'32 ( 2 + F ) + 31(K2 + 2= U 2 2 2  ________

U2 + 2 2+ F1 + F2  2,2 ( 2 + F, + F2)

2,2 (K12 + F, + F2 ) {USK4 (,4 _ .1F1F.) (7.10)

+ 2Us 2 [(32 - 34) (h4 - 2FI F2) + K3 (F 2 F -/4,F 2 )]

+ [(K 2 + FI) 32- (K 2 + F2 ) 31]2 + IFiF2 3 132}2

where U = ULI - U 2 and 
2 = k2 + 12 where I = inr. The solution also gives an

expression for the ratio between the perturbation amplitude in each layer

K 2 F,Us 1 + 1
F1 F (U1 - c)" (7.11)

As seen in Figure 7.1 the short wave cut-off for classical two-layer baroclinic in-

statbilities has disappeared and the marginal instability curve has a tail towards the

high wave numbers. This effect does not require the bottom layer 3 to be negative,

only to differ from the upper one as shown by Steinsaltz (1987) for the case of a slop-

ing bottom or by Robinson and McWilliams (1974) for a case of a varying bottom

topography. However, the form of the potential vorticitY (7.3) shows that for cases

where the sign of 3 is different in the two layers, the necessary condition for instability
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can be reached for arbitrarily weak shears, and analysis of (7.10) shows that this tail

asymptotes to zero shear as k -4 oo (Figure 7.1). Therefore, baroclinic instability

may arise with the maximum growth rate at high wave numbers even when the shear

is very small. As seen in Figure 7.1, the growth rate for a very small shear may itself

be very small, and may seem insignificant, but since the observed zonal jets on the

outer planets are long lived, an energy source from the weak instability may suffice.

The form of c (7.10) is symmetric in the meridional and zonal wavenumber. Apri-

6

4

2

2 4 6
k/n

Figure 7.2: Growth rates in horizontal wave number space for the two 8 case. The
x axis is the zonal wave number and the y axis is the meridional one (divided by
7r). The growth is confined to a band of few wave numbers. Due to the boundary
conditions, the fastest growing mode (in this case km = 5, 1m = 3 - marked with an x)
is not necessarily the gravest mode. The parameters used here are F = 100, F2 = 50,
01 = 10, /2 = -30 and Us = 0.153.

ori, one might think that the lowest meridional wave number for a given shear will
be the most unstable (since the growth rate is kci(r) = - - 12ci(r)) so that the

growth will not generate much meridional structure. However, the meridional and
zonal wave numbers must be quantized as multiples of 7r to satisfy the boundary

condition in the channel, and for weak shears the band of unstable wave numbers is
thinner than r in wave number space. Thus for a given shear it may be that only

high meridional wave numbers are unstable. This is demonstrated in Figure 7.2.
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7.4 The Nonlinear Truncated Model

The linear stability analysis implies that the short wave perturbations will become

dominant for weak shears. In relation to the Jovian jets this implies the possibility

of baroclinic instability creating a highly varying meridional structure. Of course,

this must be tested in a full numerical model, and obvious questions are: can this

meridional variation evolve into zonal jets? And if so, are the zonal velocities stable

over time? In section 7.6 we use a full nonlinear numerical model to test this. However,

before doing that, we can get some insights by solving the nonlinear system truncate(d

to a perturbation in one wavenumber. Although this restricts the nonlinear nature of

the solution, the band of initial growing modes in the two /3 case is limited (Figure

7.2), so that this solution actually reproduces quite well (Figure 7.5) the initial stages

of the fully nonlinear solution obtained numerically in section 7.6.

Therefore, we proceed to examine the nonlinear dynamics with taking the per-

turbation to have only one zonal wave number and one meridional wave number.

Rewriting (7.6) in terms of the barotropic HT. XPT and baroclinic HC, T0c components

gives

1-o' + J ('XP, UT) + J (PT, Hc) = 0 (7.12)

at

where the barotropic and baroclinic components of the potential vorticity are

3H1 + 112
±T + 1 (7.14)

1v_6 (lI - H2) (7.15)Hc -1 + 5

and 3 = ' is the laver depth ratio. The same structure applies for the barotropicD-2

and baroclinic stream functions T1T and T1c. The parameter ( = (-6) comes from the

unequal upper and lower layer thicknesses. Split into a basic state and a perturbation

and using (7.3) and (7.4), the barotropic and baroclinic potential vorticities and

streamfunctions are
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TT = OT (7.16)

P C = -Ucy + Oc (7.17)

HT - ( (61 + 2) Y + qT =- QTY + qT (7.18)
1+6

e= (01 - 32) + (FI + F2) UC y + qC - QCy + qC (7.19)

where Uc is the baroclinic shear, and 4 and q are the perturbation stream function and

potential vorticity respectively. Note that the basic state barotropic streamfunction

has been taken to be zero. This can be done due to the Galilean invariance of the

two-layer system. Then the barotropic and baroclinic equations (7.12, 7.13) take the

form

0 0 0T 0Qc O

±T + Uc qC + QT57X0C + QC-OC

+J (OT, qT) + J (0c, qc) = 0 (7.20)0 /0 0xqC0

-qc + Uc (+q + QT-OT

+Qc OT + x a c) + J (OT + ,4c, qc) + J (0c, qT) = 0 (7.21)

We express the solution as a single potential vorticity perturbation wave which satis-

fies the boundary conditions (7.8) of the form

qT = q (t) eikxsin (ly) + c.c. (7.22)

qc = qC (t) eik sin (ly) + c.c. (7.23)

and then the perturbation stream functions can be expressed via the inversion relation

so that

O = - qT (7.24)K;
2

OC = -qc
K2 + F + F2 (7.25)
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The main advantage of writing the quasi geostrophic potential vorticity equations in

this form is that when plugging (7.22-7.25) into (7.20,7.21) the Jacobians from the

barotropic equation (7.20) vanish, while the baroclinic nonlinear contribution (7.21)

gives

J (OT, qc) + J (0c, TI-)
ik1l(Fl + F2) I * 'q ',(1)(.6

.K2 (K 2 + F + F2) qcq7 - qcqT sin (2ly) (7.26)

This is where the truncated nature of the solution appears. The nonlinear baroclinic

interaction gives a zonal mean correction to the basic flow with a specific meridional

structure which depends on the choice of the truncated mode. Nevertheless, as men-

tioned in the linear analysis (which applies when the perturbation is small) since the

band of growing modes contains only few modes (Figure 7.2) an approximation of

only one growing mode turns out to be a fair approximation. Since the basic zonal

flow is fixed, we can specify this mode to be the fastest growing mode. Therefore we

can split the baroclinic equation (7.21) in two: one part for the linear perturbation,

and another for the nonlinear correction. From the solution to the nonlinear part

(7.26) we can approximate the structure of the nonlinear correction to the potential

vorticity as having the form

q- = q' (t) sin (21y). (7.27)

This form is unlike the linear perturbation part (7.7, 7.9), having no zonal dependence

and a different ineridional structure. This nonlinear correction to the basic baroclinic

state must also satisfy the two boundary conditions given by (7.8). In order to ensure

this, we use the inversion relation from (7.7) for the zonally averaged case

E- -2 -(F1 + F2)1 c = 4C (7.28)

which, when solved for pC with the boundary conditions, gives a correction to the
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basic zonal velocity

U6 2=q' (t)

412 + F + F2

[cos(21y)- cosh[VI+F 2 (y-)] (7.29)

This result is similar in form to that found for the weakly nonlinear theory by

Pedlosky (1970). Here though, the weakly nonlinear requirement is relaxed (but

replaced by a truncation assumption) and this correction may extend into the highly

supercritical regime, as we show in the numerical experiments in section 7.6. The

amplitude of this zonal flow is not limited to the weakly varying parameter and, in

fact, can be stronger than the eddies themselves.

-0
uC

Figure 7.3: The analytical baroclinic induced zonal velocity Uc (7.29) from the trun-
cated model as function of the channel width for the first four meridional modes.

Figure 7.3 shows the shape of the mean flow correction for the first few modes,

and indicates that for the higher modes we expect to get a multi-jet meridional struc-

ture. This baroclinic contribution tends to reduce the shear rather than increase it,

causing oscillations in the amplitude of the perturbation in the classical weakly su-

percritical case (Pedlosky, 1970); once the correction reduces the shear enough it goes

back into the stable regime, halting the growth until the effect of the nonlinearities

decreases, and the cycle repeats. Here, since the flow may be strongly rather than

weakly supercritical the nonlinear wave effects may not be enough to halt the growth.

For the cases of high wave number perturbations, though, the growth band (Figure
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7.2) becomes narrow in wave space so that the effect of the nonlinear correction is

similar to that of the weakly nonlinear case, and the perturbation may reach a steadyN

equilibrium. These oscillations can be seen in Figure 7.4.

The truncation and the separation of the nonlinear part out of the baroclinic

equation allows us not only to find the baroclinic induced zonal velocity UC, but

to solve for the perturbation amplitudes and the baroclinic mean. Ve can write

the truncated system as a closed system of three equations for three unknowns; the

perturbation amplitudes q',q' and the baroclinic mean q' The specifics of this

derivation are given in Appendix (B.1). The resulting system is

aq+ikLq+ ik;TNq = 0 (7.30)
at

0- iki (F, + F2 ) r , q.
at C 2 + F, +F 2)[Lc T -- =

where q = ) and the operators N and L are given in Appendix (B.1) as well.
k. /

This solution is shown in Figure 7.4 which plots the evolution of enstrophy in time for

the linear case, the truncated nonlinear case, and a full nonlinear model containing

many modes (section 7.6). This example shows how the nonlinearities stabilize the

initial instability in both the truncated and full model.

Since the initial perturbation is small, and the system is baroclinically unstable,

the perturbations in all models grow similarly. When the effect of the nonlinearities

is large enough, the nonlinear models separate from the linear model and, since the

perturbation is dominated by the most rapidly growing mode, the truncated model
with only this niode gives a reasonable estimate of this separation point. Then the

truncated model begins to oscillate by exchanging energy between the perturbations

and the basic flow, whereas the full model (which resolves harmonics neglected in

the truncation) equilibrates with a much more steady, amplitude. In general this

truncated solution captures well when, where, and how the interaction with the mean

flow halts the instability. We have seen a somewhat similar interaction between the

nonlinearities and the mean flow in the convection model (section 5.1). There, the

nonlinear eddy fluxes induced a mean zonal velocity and then acted to exchange

energy between the upgradient momentum fluxes and the viscous fluxes (see Figures

5.1 and 5.2).
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Figure 7.4: The enstrophy as a function of time. The dash-dot line is the linear growth
rate for the fastest growing mode using the linear growth rate from (7.10). The dashed
line is the growth calculated from the truncated model (7.30 and 7.31). This shows
that when the perturbation is small the system aligns with the linear growth rate,
until the nonlinear terms become dominant and the system begins oscillating while
exchanging energy between the eddies and the mean flow. The solid line is the result
for the full nonlinear system (run S4) which qualitatively follows the truncated model
but contains many modes and therefore does not have a pure oscillation .

In summary, the truncated model allows us to examine qualitatively the nonlinear

interactions which have several roles. First, they create an induced zonal flow with

a highly varying meridional structure which (as we show in section 7.6) may be

stronger than the eddies and therefore have the potential of becoming zonal jets.

Second, this induced flow stabilizes the growing perturbations. This "toy model"

provides a closed system of equations for the perturbation amplitude in both layers

and the change in the basic flow due to nonlinearities, without requiring the system
to be only slightly supercritical; for such cases the correction due to the nonlinearities

becomes significant (as opposed to being on the order of the departure from the

critical curve) and a strong multi-jet structure may emerge. Indeed, since the high
wave number instability dominates the two 3 case, we might expect multiple jets for

a weak baroclinic shear.
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7.5 The Weakly Supercritical Limit

Most previous treatments of nonlinear baroclinic instability have required the system

to be weakly supercritical (e.g. Pedlosky, 1970). Instead, we have truncated the

system to one unstable mode. Here we present the truncated model in tile limit

where the shear is taken to be .just slightly supercritical. This limit corresponds to

the weakly supercritical theory of Pedlosky (1970), except that we allow for the more

general case of different layer depths and a variable 3. If we vary the value of the

critical shear by a small parameter A, so that it slightly exceeds the critical value

U5 = U, + A, (7.32)

then the imaginary part of the linear growth rate (7.10) becomes

Ci A (K 2 + F, + F2 ) {UCK 4 (K 4 - 4F,F2) (7.33)

[ (32- 3 )(. - 2F, F 2 ) + K (32 F1 -/3lr2)

Thus it, is proportional to A2. Therefore we follow PedloskY (1970) and define a slow

time scale, T, such that

0 10
-- 4- \ A- (7.34)at at OT'

With these exl)ansions we are able to obtain an analytic solution to the system of

equations (7.30,7.31). The small variation to the shear U0 -4 U0 + A leads to an

expansion of the operators in (7.30)

L = L0 + AL 2  (7.35)

and we assume the system is weakly nonlinear so that N will be O (A). The op-

erators themselves are given in Appendix (B.2). We expand the potential vorticity

perturbation (7.7) as well

q=e -= c  qo+A q+Aq2+ A2 (7.36)
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By the choice of co as the neutral phase speed q0 does not depend on t. Expanding
i

(7.30) in powers of A2, gives

O (A1) ik (Lo - coI) qo= 0 (7.37)

Oq(A) : -ql+1k(Lo-coI) q + a qo=0 (7.38)

O(A) : q2 +ik (Lo - coI) q2 +9- q1  (7.39)

+ik (L2 + Nqc) qo = 0

Solving this system with the equation for the mean baroclinic correction (full solution

in Appendix (B.2)) gives an amplitude equation for the growth of the perturbation

024 k2c A + k2NA ( A 2 
- IA (0)12) 0 (7.40)

where A is the amplitude of the perturbation and the nonlinear parameter N is the

Landau coefficient which is given also in Appendix (B.2). For very small amplitudes

the system thus reduces to the linear system. As the amplitude grows the cubic term

becomes more dominant and if N > 0 this term will act to slow the growth and

eventually reverse it. At a certain value of A this term will change sign and begin

increasing the growth, and thus a limit cycle is created. This type of oscillation is

seen in Figure 7.4.

7.6 Fully Nonlinear Model and the Generation of

Multiple Zonal Jets

The truncated model predicts a multi-jet structure for high wave number instability.
In this section we use a fully nonlinear numerical model to explore the role of the

other modes on the generation of eddies and jets, and on the effect of quasi-geostrophic

turbulence on these jets. The model we use is based on the same equations analyzed

in the previous sections. It is pseudo-spectral (Boyd, 2001), where each layer has

a spatial resolution of 64x128, is periodic in the zonal direction, and is confined

within a channel in the meridional direction. On the channel walls we require no

meridional flow and that the circulation is conserved (implemented by requiring the
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mean ageostrophic meridional velocity to vanish).

The parameter regime is fairly simple since we only set the layer depths (by setting

the nondimensional Froude numbers). the 3 parameters and the baroclinic shear. If

we were to fully compare the numerical model to the truncated model we would set

the shear in such a way that only one mode will be growing (see Figure 7.2). For

our standard run, following Dowling and Ingersoll (1989) and Ingersoll and Pollard

(1982) we choose the typical Rossby deformation radius to be on the order of 2000

ki. This value corresponds to the observed scale of the jets on Jupiter. We take the

domain width to be an order of magnitude bigger then the deformation radius, thus

setting the upper nondimensional Froude number to be F1 = 100 (F, = L -- ). The

bottom layer is taken as to be 5 times as deep so that F2 = 20. '3 is set according

to the curvature of Jupiter (31 =Mcos 0 L ) giving the nondimensional value 31 = 10,

with the characteristic velocity being 50 mis and the same typical horizontal length

scale of 2E41 kin. Following the barotropic stability analysis bY Ingersoll and Pollard

(1982) which shows that 32 is at least -33, we set 32 to this value. Their analysis

shows that this is a lower limit for stability and in fact a more negative lower layer 3
will be stable, but for our standard run we choose this limit. Unlike other models for

jets (Williams. 1979; Panetta, 1993: Vallis and Maltrud. 1993) we find in the upper

layer that the standard barotropic stability criterion Kuo (1949) is violated (Figure

7.14), much as we see in the observations, but the flow is still stable. We refer to

these values as our standard run (denoted with S and tile run number - see Table

7.1), and experiment sets B and F show a sensitivity analysis to the parameters of the

standard run. The vertical shear is set so that several growing unstable modes exist,

as demonstrated in Figures 7.1 and 7.2. Since the two layer model is invariant under

translation (Pedlosky, 1987) it is only necessary to set the baroclinic shear U1 - U2

and not the absolute values of the basic state velocities.

We begin all our experiments with a small random potential vorticity perturbation

field, with initial perturbations in all 7 multiple wave numbers up to k, 1 = 107r. Since

the system is forced by a constant vertical shear, eventually the system becomes

baroclinicallY unstable and the fastest growing mode dominates. We denote this

fastest growing mode with the notation ki, ,, such that k = k,7r and 1 = 1mr. As

seen in Figure 7.4 the enstrophy begins growing in agreement with linear theory (since

time amplitude is small). When the effects of nonlinearity grow enough, the enstrophN

diverges from the theoretical linear growth curve as predicted by tile truncated model.
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Figure 7.5: The induced zonal velocity as a function of the channel width. The
solid line is the theoretical baroclinic correction Uc (7.29) from the truncated model;
the circles are the result from the nonlinear numerical model (the 65 points are the
meridional resolution of the grid) towards the end of the baroclinic growth stage for
U1, and the dashed line is the steady state of the numerical results after the inverse
energy cascade.

It can be seen that the nonlinear truncated model predicts quite precisely where this

separation takes place. Moreover, when we plot a snapshot of the top layer induced
zonal flow U1 at this time from the numerical experiments (circles in Figure 7.5), it

matches well the truncated model theoretical prediction. The reason for this is that

as long as the growth of the perturbation is dominated by the fastest growing mode

according to the truncated model there is no induced barotropic velocity. From the

form of (7.14, 7.15) we can write the induced zonal velocity in each layer

1- UC + UT U2 =- -vUcUT (7.41)

and therefore the induced zonal flow in each layer has the same structure as the

baroclinic induced zonal flow Uc. We see exactly a ratio of 6 between of the amplitude

of the induced zonal flow in the upper and lower layers.

In Figure 7.5 the analytic result of equation (7.29) is plotted for the cases of

meridional wave numbers m = 4, 8 with the results from the full model for runs S2

and S14. The numerical results contain 65 points (the meridional resolution of the
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( In ' 1/5 i V S k,_ [/A 111 92

S1 100 10 3 0.0263, 10.8 7 1.87 0. 1

2 0(1.0296 9.8 8.9 2.32 0.13

S3 0.0332 9. 7 6.37 3. 1 0. 1.

S4I 0. 0:l3:8 8.7 7.09 3.17 0.13

S.3 0.0372 10.4 6.25 3.33 .13

StG 0.0385 8,7 5.79 2.,51 0.17

S7 (.( 11 10.3 7.3:t 1 .36 (. 1

8 1.044 8,6 5.44 3.18 0.25

Q9 0.045 8.7 7.71 3..16 0.15

S10 0.0155 9, 1 1.11 3.26 0.17

si8 0.0494 8,4 6.88 3.07 0.19

S12 0.05 9.3 6.1 1 1.37 0. 11

S1 3 0.0525 9.2 4.28 3.2 0.28

S14 0.0562 8,4 6.5 2.94 0.22

8(5 (0.06 12 7.5 6.92 1.91 0.36

S16 0.0622 8,3 5.63 2.36 0.31

817 0.0632 7.3 5.76 2.07 (.25

BI 100 5 10 -10 0.1032 10,4 8.36 2.27 0.1

112 -5 0.0)6 10. 1 7.3:1 1.83 0. 11

13: -2 0.1277 9(. 7.26 1.,: 0, F. ,

B4 -1 0.0183 9,6 5.92 0.73 0.16

1(5 51 ((.(088 none no jets II )

B6 1 0.0006 non no jets 0 0

F1 100 1 10 -3 0.0382 10,1 6.115 0.18 0.21

F2 10 0.037 9,7 10.25 2.78 0.11

F:3 t))0 [0.0369 8.5) 6.04| 0.51 0).03

Table 7.1: Numerical experiments using the fully nonlinear pseou-spectral nmodel. L'

is the Froude m l)er for the upl)er layer: 6 is the laver depth ratio between the upper
and lower layer (and inverse of the Froude numtber ratio); 3j is tie 3-plane )araleter
for the upper layer: B is the ratio U.s is the imposed Iaroclinic shear; k,., I,,, are
the fastest groxving )arolinic modes: A is the ineridional spectral maximunm of the

statistically steadv state averaged across the channel (thus X gives an estinate for tle

average number of jets), and il is the ratio of the induced zonal velocity amplitude to

time eddy amplitude (see text) in each layer.
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model) and are a snapshot of U1 (which has the saine structure as the U-, field (7.41))

taken just before the time when the two models diverge. Therefore, although the

t- I t -10I- m-V V1C'b'0
* e......004

.... z , I. . v . q U
-0.02

0.04

t =60 t 1= 10

050

O .-40.2

0 0.

-02
0.5 -0.4

F -0.60 -1

Y 42

Figure 7.6: Instantaneous total zonal velocity fields at different times for the top
layer (run S5). Beginning with a randiom vorticity perturbation (a), then becoming
baroclinically unstable (b) dominated by the fastest growing mode (in this case k". =
10. 1,, = 4), then several jets are formed (c) matching the prediction of the truncated
model, and cascading to stable jets (d) with a typical width oii the order of the
Rhines scale. Full simulations of the zonal velocity field for this run are available at
htti): / /lake.mit.edui-glenn /yohai/movies.html

choice of only one mode in the truncated model seems initially quite restrictive for

a nonlinear prediction, in this type of instability scenario where the fastest growing

mode dominates until turbulence develops, the truncation is quite useful. After the

models diverge and more modes come into play, the truncated and the full numerical

models differ in the sense that there is no pure oscillation in enstrophy in the full

model as in the truncated model (although we can create such oscillations for special

weakly nonlinear cases), but rather a noisier (higher frequency) signal (Figure 7.4).

However, the amplitude in the two models is of the same order. Qualitatively, this

equilibrium state is the same as seen in the truncated xodel for one mode, except
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Figure 7.7: Zonall ,vaveragedl fivlIds for the top) la.vor at. stvadlv state (run S5). left:
po tenia l vo )rticitv ((I,); center total Zonal Velocity (al): right: streamnfiniiction ((,I)

that. as thei( energy cascades mtore inodes appear. and the cominiiation of thbein all
creates' t iiis leveling of th len(lst rophy' . Figure 7.5 then also shows thle finial stc ad.lv

st.ate atter tilie inverse casca,de. showing dlistinct Jets wvitll a scale set byv H ie baroclin ic

induced zonal voloci tY Vc'. The Jets have sharper east.ward titan wvestward wiii(ds. due1

to the asNilieti-v inl tle barot.ropic stab)ility criteriont (Figure 7.14).

The total zonal x-elocitY inl each laYer is composed of thtree components: thle cont-

stunit basic flow creatinug thle ve'rtical shevar. the indulicedl zonial velocit-Y (reate bYI ) thle

nionliniear initeract ion U,, andl( t he W., eddy field . As the instability grows, the intducedl

zonal flow g)rows bvianxv ordlers of mnagniitudie anld. as dhiscussedl above. forntis inito a

11111It i-Je(t structutre. (O)nce te gtowthI is halt ed. and th li(list rophtY set tIes into equ iiib-

rium. quasi -ge'ost rophlic tilt-billenice callses tile mean hori701ntal SCAleS to iliCrVase. The
inverse ene'rgy cascadle also affects the Jets and t he initial niulti-je tutre(hil

so fiir was dc'e-llli lt(ed olY bY the (doinant growintg mlode() b)rea.ks dowvn: thlen fewer

but st.roniger je'ts app~ear ( Figure 7.11).

An examplle of' thle forinat ion of.j(ets is p)resenlted inl Figure 7.6 wvhicht shows sniap-

shots of tilie zolnal Velocity field of the top) layer (without the coiistanit applied ve'locity

U1 to emiphtasis the chanlge of thle aml)itude following the instability) at dlifferont,

ilic(. IllitiallY a smtall ranidomi pert urbation is applied to thle basic state' (7.6a) . At

somec tilte( t he fastes5t growing mode (inl t his case 4K71,: 11 ) I -4) becomles dlomIinamit

(7,6b) and the p)erturbationi grows expontentiiallv. Then, as p)redictedl bY thle truncated

II o(('. li 101dihea jt 'mc Ijotsfoln ('('aljets (7.6c) . Inl t ine. imiore miodes (o ic(

itn. the( flow%, becomes turbutlent, and( anl inverse entergy cascade( b(egins setting fiv(e nia-
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Figure 7.8: The transition from baroclinic instability to jets: Instantaneous to-
tal zonal velocity fields at different times for the top layer. These snapshots
"zooln in" on the transition from the growing baroclinic perturbation to jets; be-
ginning froin a weak random edv field (a) to a growing baroclinic perturbation
(b) and transitioning to a jet structure (c) cascading to larger meridional scales
(d). Full simulations of the zonal velocity field for this run are available at
http: /I /lake.mit.edu/ -glenn/yohai /movies.html

jor jets (7.6d) in the channel (two westerly and three easterly) with a typical width

on the order of the Rhines scale (Figure 7.9). Figure 7.10 includes arrows for the total

velocity for the same run (S5), indicating the dominance of the zonal velocities over

the meridional velocities. In Figure 7.7 we show the top level zonal inean potential

vorticity, streamfunction and zonal velocity for the same run )resented1 in Figure 7.6

(S5) at steady state. It shows the potential vorticity is dominated by the background

component, but the signature of the potential vorticity staircase is apparent.

Figure 7.8 shows a similar plot to the one in Figure 7.6 but for a case of higher

vertical shear, which grows in a lower wave number (k=, 6, ,, = 3) and cascades

rather quickly into 5 jets and then one wide central westerly jet with two narrower

easterly jets. The snapshots in this case are closer inl time andl show the transition
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Figure 7.9. 'The jet widlthI as a finictitoin of tie( applied shiear. 'I'lie miarks (lcuote the
average widith of thet( jets in thet( top) la.yer for each stand(ardl run. Tile Nvidth of thle jet
is dleterminted by a spectral analysis of the final statistical steady state. andl averaging,

ie( leadinig mienidijonal wave lenigthI across ti hlanntel. Illie solidl line is the( theoretical
vallie for the Rlinies scale using the noti-dimnensionial shear and the 3 value for t lie
utpper laYer.

fromt a linearly growing distutrb)ance into a stroog zonial jet.

Geost rophic t urbulence t heorY predicts that after the sYstein becomes t urbuilenit

tie( typ)ical scale will cascade ilp to the( Rliiies scale Lj -. 7-1 - (Rhines, 1975). The

relation of this scale to the ineridlional scale of the .Jovian jets has b)een proposedl bY

Williams (197-9). It .;can be seeti in Tat)le 7.1 that our numerical resulIts agree wit Ii th~is

scalinig. since the( lower t he shear the( higher the inode of' tie( fastest growing niodle

mnighit be. and( then mtore i nitijal.jet.s miaY be form edl. TvY)icallvy. itore,jets at tie( initial

stages result in more jets at equilibrium after the( inverse energy cascade. Figure 7.9

shows tite mevan tvpical scale of the ,Jets as functijot) of the shear for all standard runis

(sonie presenlted itn Table 7.1). Thel( width of' thbe jet is (determined by dloinig a spectral

anialysis of' the final statistical steadyv state for each runi and averaging the( leading

itieridlionial wave leiigtll across the(, chamnnel. WXe c-an see that in general the final scale

is governed bY thle R hines sc'ale.

Figure 7.10 sho-ws the final zonal state for a few of' the( exp)erients shown '1n

Table 7. 1. The experiments differ inl the applied shear which set.s a different inducedl

intetidionlal structure resultinig inl a (differenit stat istic'al stcadYv state after thle entergy

cascade. An examplle for the evolution of the V-1 field tin tinme is given ini Figure 7. 11.

In all exp)erimnts the( nonliniear correct ion U, which is initiall.v weak (duel( t.o
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Y

Figure 7.10: Examples of the final steady state total velocity fields for different runs.
The contours are the zonal velocity and arrows show tile total velocity (zonal and
meridional). The upper left panel is run S13 with an applied shear of U-,, = 0.0525
and fastest growing mo(e km = 10, I= 8; upper right panel is run S5 with an applied
shear of Us = 0.0372 and fastest growing mode km, 1,,, = 10, 4; lower left panel is run
S14 with an applied shear of Us = 0.0562 and fastest growing mode k, = 8, 4;
lower right panel is run F2 (6 = 0.1) with anl applied shear of Us = 0.037 and fastest
growing mode k,,,, l= 9, 7.
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thle stmallI in it i]al 1111)1 itl11(1e) grows suibstanit illY to thle order of t he basic flow. Thiiis

iiiduced zonal velocity always has a inulti-jet structure. and1 therefore since the b)asic

flow is alw-ays constant the vinergeince of' the jets dlependls onl the ampl1 litude ratio

between thle edd.y zonial Nrelocityv and the induced zonal velocit.y. To quaniitY the(

/d

07 -

Figure 7.11: -I'he evolution of' t lhe induceed zonal flow of' thle top) laYer (Ul ill timue. It
begins from a weak random field (a) until tile fastest growing itode picks upl. As
this mode grows (b). an indiced inrdoayvyig flow emerges miatchinig the( p)re-

dlictioni of the truncated miodel for U'(superimposed hr, the dlashied finle). uinti iitlle
noidninearities become big enough that iniorc miodes conlie inl. Then tile flow% b)ecomIes
turbulent (c): anId the jets become less organizedl (d). dliverginig fromt the initial st ruc-
mire of eq. (7.29). I'lle Jet inieridliomial scale inivrases to thle Rines scale (showni 1) 'v
the solid line oil the right), leaving the systemn with five jets (e). Onice it reaches the

Rinmes scAv le th induced zonlal flow remainls stable. A loniger time of the same runl
(S5) c-aii be seeni inl the bottomn pane(,l of Figure 7.12.

strength of' the jets we dlefinle a p)aramleter q~ for each laver, as the ratio of t he ineani

of the U,- field to thle ineaii of tile eddy field 11' averaged over timle

- (7.12)

Therefore a rj > 1 value is a, flow (domniated by the jets while a qi < I value is ai flow

(dominated bY eddies. The q, values for both layeors in differenlt runls are given ini Table

7.1.
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Figure 7.12: The kinetic energy for the induced velocity field U,, and the eddy field u'
for both layers as a function of time (run S5). The bottom panel is the corresponding

evolution of Ul in time across the channel.

Alternatively, it is useful to look at the kinetic energy of the eddies and the mean.

Figure 7.12 shows these kinetic energies as a function of time in both layers. Due

to the fact that the induced flow is a consequence of eddy interaction, the mean

kinetic energ- is smaller than the eddy kinetic energy in the initial stages. However

once geostrophic turbulence takes over and the energy cascades to larger scales, the

kinetic energy is transferred to the mean and the mean zonal flow dominates over the

eddy field. In the bottom deep layer however the energy remains in the eddy field,

meaning that for this time scale the flow does not become barotropic and the jets are

concentrated in the upper layer.

7.7 Discussion

In all numerical results shown above, the jets are seen in snapshots of the total

velocity field without applying zonal or time averaging. Ve find that when we use
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suc(h averaging as is ofteli (lle inl sthid(ies of jets (c.f. Paiett a. 1993) even s nongaer

jets seein to b)e created and1 with a bigger qj value, yet inl somne of these cases thle

instant aneous eddYl field tj', is actually (domrinant over the U fieldI (il <c 1). and t hie

sniapshiot plots seein not to resembille jets. Tlmis is often t he case inl the (leel) Ianer where

lie averaged indu iced zonial velocity U2 is smIaller than G', by a factor of 116(7.-11I).

inl the top laYer however. whatever the app)liedl shevar, there is anl indiucedi zonal flow

which is tYpicallY at least as st roiig as the eddY field (tj > 1). This c-an be seen iii

Table 7.1 where ili addit ion to the standard run showving the relation between (te

a1pplied shlear anrd thle nuimber of*jets (Figure 7.9). sensitivitY studi(ies tio th le ratio ot"

-3s and laye r dlepths are given. W\e find that the b)igger the absolute value of' the

negative 3, tie irore jets exist ili t.he top) layver (duie to the equivalence to wveaker

shevar - Figure 7.1). aiid the b)igger the dIepth ratio thle weaker is the induhced zonalI

velocity ill the b)ottolli layer, while the top) layer is dlominated by jets.

igure 7.13 shows onl the left sidIe patiels the instantaneous picture after the sYst erm

has reached steawdY srtate an 111oil thle right side paiiels lie corresp)oninig tveunpora llY

averaged(loct. Th pper panel(s (run S3, ill = 3.1 1) feaiires fourr westerly jets and1(
three easterlyv jets5 ill thle siiapshiot plot, and inrdeedI thle tuime iniean figure oil tIle right

shows thle sanie nieridional structure wvith similar aumpli tudes. The middle figure (run

SLi. ll -z 1.87) shows a case wvith a field showing somre jets b)ut wvithiri aii obviouse(d

field. while the tiiiie average plot shows (listinuct ,jets. The b)ottolii pl)arels show at case

where the z.onal velocity field is doiniatedl by large edd(ies (bottomi layer of ruii SI13.

12 0.28) without anY jets. vet whIen averaged the eddies disappear. leaving orilY t ie(

iinduced Zonial velocitYv which gives anl appearance of at strong iiieridlionial variation arid]

at jet structure. Thierefore we emph)lasis that inl this work we (d0 niot needl to p)erformi

such averaging to the velocity field, and the.jets appear inl thle instantaneous pictunre.

Ili the observations of the Jovian plaiiets the flow field is established by tracking cloud

teat ures, andl therefore we expect the instantaneous p)icture to b)e rrost closelY related

to the (lata.

The main caiveat to keep it)iinind( rega.rding the miodlel wve ulsed(lhere is thle as-

sumiied baroclinic structure. which although converted froin the standard terrestrial

case based onl est.iiiiates of Iiigersoll and Pollard (1982). still is (quasi-goost rophic. at

q1uestioniable approximnation for (deep) atmnosp)heres- However, assumning barochinicity

(toes plaY a role in theo dYnaticls, arnd given the Galileo observations of Jupiter that

inmply t hat there is an upiper ion-conivective laver (Seiff vt al_ 1996: Atkitison (t al].
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Figure 7.13: Comparison of the instantaneous and time mean steady state total zonal
velocity field for different cases. Upper panels show a case (S3) where the time mean

represents well the instantaneous field; tile middle panels show a case (SI) where
the instantaneous field shows some jets but also strong eddies that do not appear in
tile time mean, and the bottom panels show a case (bottom layer of S13) where the
instantaneous picture is totally dominated by big eddies while the averaged picture

gives an appearance of a strong meridional variation.

1996) resembling a terrestrial weather layer, then this model may give some insight to

the mechanism driving the .Jovian jets. Of course there is much nore to be desired in

terms of observations of the outer )lanet's atmospheres in order to develop theoretical

understanding of the deep columnar structure.

One of the inain questions arising from ol)servations on Jupiter an(l Saturn is that

from the data it seems that the barotropic stability condition is violated (Ingersoll

and Cuong, 1981; Smith et al., 1982; Stamip and Dowling, 1993), yet the jets seem

stable in time. Barotropic instability in a single-beta model, whether one or two lay-

ers, is very efficient and eliminates such gradients quickly. Thus, previous barotropic

models featuring stable jets had to have this inconsistency with the data. Ingersoll

and Pollard (1982) resolve this problem by suggesting an alternative stability crite-
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H1ouieW to th linlteril M oummaId stilctu T Or Y hi suggest thlat ill ordler for lhe flutid

to to have stalev jets il should be bigger then F % heir analysis is consistent.

with the Voyager dat a. In our miodel (Inc( to the special gomet ry used for the bot tom

convective layer. which results iii a, scale separation between the scale of' thle inista bil-

ity and the resulting jets. the h)arotrolAic stability condition is stil violated (Figure

7.14), and yet the jets are stablIe in time, due to the continuing exchange of energy

Met.enI thle uwean flow and( the edd(ies awil the influence of t lie (deevp layer on the upper

l aver flows (in tie spirit of Stamrp and1 Dowling (199:3), but wvith jets which are less

barot ropic). %Ve niote that the uipper layevr uY. appears to approach 3-2 oi the negative

side, indkiotHng again the implortan",' of the coup)ling between the layers.
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7.8 Summary

Traditionally there have been two hypotheses for the existence of the jets observed on

tile giant planets. One approach (Busse, 1976) assumed that the interior is barotropic

aiid the jets are generated by an internal columnar structure, while the other approach

treats the gas planets as a shallow water system (Dowling and Ingersoll, 1989) as-

suning the deep atmosphere is passive ano1 jets can einerge front eddy interactions

(Villiams, 1979; Cho and Polvani. 1996). Recent observations (Atkinson et al.., 1996:

Porco et al., 2003) imply that taking only one of these approaches may be omit-

ting important components of the dynamics. In this chapter we tried to combine

these two approaches assuming a baroclinic structure which internalh is dominated

by columnar structures interacting with an tupper layer resembling a regular weather

type layer. In addition, we propose that baroclinic instability may provide the energy

source, even in the limit of weak vertical shear as suggested by observations.

We show an analytic solution for the generation of jets in the limit of a single

mode perturbation interacting with baroclinic zonal flows and then proceed using

a )seudo-spectral fully nonlinear numerical model to show that such jets can be

generated by baroclinic instability. The analytical solution provides useful insight into

the mechanism observed in the numerical results, especially in the way nonlinearity

organizes the zonal flow field. The obtained jets are stable on long time scales and are

visible in the instantaneous spatial numerical picture without the need for zonal or

time averaging. Clearly there is much more to be understood in the dynamics acting

in the interior of such gas giants, and such a parametrization of the interior is just

a first step. However it does suggest the importance of coupling these two regimes

even though they may be governed by very different physical mechanisms.
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Chapter 8

Conclusion

8.1 Thesis Summary

We look at the results of tis work on) two different levels. One is the pure fluid

dYnllnitcal aspect, of convectio 01n1 an anielastic rot at ing sp)here. and the secondo is, the

application ot the results. ando this new 0GOL t.o the dynIaics ando circulationi of

thle giant p)lancets. W%e wvill begin with discussig the first aslpect. and then p)roceed1

to (discuss thle secondl in line0 with the questions raised in section 1.4 regradling the

circuilat ion on thle giant planets.

8.1.1 Convection in a Rotating Anelastic Sphere

Froum onilY a fluid dYn1a11i(ial poinit of view we have built a new model to eXamille a

p)rolvi(n which has been well studied b)efore. U sing anclastic dynamics rat her than

Bussinesq thme fact that the densit 'y anoinl eed,omrsuea ela nrjy

the geuneral equat ion of state ando the fuill 3D spherical s , steni. mnake this t reatmenit

unlique. WXe have shioNi that sorne of the ideas suggested lbv linevar andl Boussinesq

theories can lbe extendedl into eases ofailelastic turbulent convection, In other respects

however t hese soltutionis are hinuited.

We~ begin with looking at the issue of convection1 in a systern where the (direc-

tionl of' gravity.N and( rotation are( not parallel. This problem hias 1)oth oceanographic

appIlicationls (Sheremret. 2004), and is addressed in the p)lanletary' literature as wl

(e.g. Busse vt al.. 1998). WVe show that tile ratio Ta-M is ani inmportant mecasuire

in chlaracte'rizing the (dvnainics, and( sets at limit between rotationallY and gravit a-
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tionally dominated convection. This parameter will determine if the convection is

aligned with the axis of rotation or not, and therefore whether convection columns

are formed. We show that when convection is not aligned with the axis of rotation,

superrotation will not develop, and in fact for such cases, the equatorial velocity will

be retrograde. Superrotation forms only when convection columns align parallel to

the axes of rotation and are tilted in the direction of the shear. We find that this is

a robust result as long as ,,V > 1. due to convection driving the fluid to )eing close to

isentropic. The number of columns and amplitude of the shear depends on tile values

of the noildiiensional numbers.

The issue of the tilting or spiraling of the columns was shown previously by studies

such as Zhang (1992). These cases however were either linear or weakly nonlinear

so that both cyclonic and anticyclonic cells formed. We find that this state can not

be sustained when the shear becomes strong., an( therefore we find it only when

velocities are small during spin-up. When the shear exceeds a critical value only the

rotating cells that are in the direction of the shear are sustained. The circulation cells

before and after this transition are tilted and provide therefore an angular momentum

flux outward. The tilt or spiraling of the columns is associated with the variation in

planetary vorticity in the direction perpendicular to the rotation axis. However there

is still a single and positive phase velocity which sets prop)agation of the modes. While

the perturbation is growing, the angular momentum flux is balanced by the growing

mean zonal velocity. The shear is created by the prograle surface flow on the exterior

and retrograde surface flow in the interior. Once the shear has become large enough

and the circulation undergoes a transition to having only cyclonic cells the balance

is between the uIpgradient momentum fluxes and the viscous fluxes. Superrotation is

maintained near the equator and is stable, while in the interior there is a subrotating

flow.

The strength of the subrotation depends oil the level of compressibility of the

fluid. In a Boussinesq fluid the streng-th of the westward subrotation in the interior

would be comparable to the eastward superrotation. However when the density in

the interior is larger, the subrotating flow will be weaker than the superrotation due

to a baroclinic contribution to vorticity which is associated with the compressibility

of the fluid (section 4.3). Anelastic effects are therefore strongest along the outside

edge of the sphere, where compressibility is greatest. We find that this radial shear

associated with the compressibility varies also in latitude.
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Alt 1hol og0i suplerrotation lhas been sliowin in several 31) Bouissinies(I stuid ies. tiese

have not demonlstrated1 the link to the linear theories and( have not shown explicitlY

ie ineclianiisin for t ile sup)errotationl in a 3D sYsten,in OIILCn of the other molOes this

circulat ion app~ears oilly wheii averaging in timle. To the b)est of our knowledge this

is thle first illodlI which shows t he conivective columns exlicitly in the 3D flow, the

eastward prop)agationl of these columns, the shear within the columnin in the (direct ion

of' the rot at ion axis aniid the transit ion to onilv coluins rotating in the dIirect.ioni of the(

shear. IIn chapters 4 and 5 wve use simp)ler itiodels to understand tihe physics governillll

these proc(esse's. andio give applroximiat e anialytic e'xpre".siolls to their dIepeiildclicc oil the'

p)rope~rtie's of the fluid.

8.1.2 Application to the Atmospheres of the Giant Planets

The SOCOIiA aspect. of this work is thle applicat ion of these results to the dYlvluics of

thle gianit p)latiets. lIn tliis respect. ou1r general circullatioin iiiodel is aii impilrovemhenlt

over p)revious5 modlels due to thle including of' complTressib)le dliailiCs. Miore realistic

thlermiodyvnamnics and ai forciiig which is not conifinedl t.o the (dominh b)oundaries. Be-

Yound t lie iiiplrovedl phYsics ail inip)ort ant. adlvaiitage of t his noew niiodlel is that it is now%

p)art of' the XllTg(-nl standoardl packaget, aind cani be dowinloadled anid used bY anvonie.

One of the prob)lems wvithI compIaring nmrerical results is the liimitedl accessibility to

ot her niodels anid specific configurat ions -which coulod not be cross examined. 'Ihe(

opeii coode philosop)lYv of thle MITgcin ando the available mnual anidl help resources.

inake this niodel easily accessib)le.

InI section 1.4 we have raised several questions regarding the circulation onl the

giant p)lane(ts. WXe come bax- to these in light of ouir study.

Doth Jtl u)it(,r andl Saturn are dominated \vit h a strong superrotat ing equatorial

flow ( Figure 1.1). W'e have shown that anigular Ilolnictit.uin1 eddy fluxes associated

wvith coinvection inI a rot at ing systein can dlrive superrotationi with velocities simnila r

to the velocities onl the giant planets. Thle fluid velocities iii our niiodel (10 depend

onl the HaYleigh and Ekiiian numbers: however thle iiiechanisin for sup)errotation (does

iiot depenld oil tile lloniillsional numblers (see discussion iii 5). Woe shiow inl sectioii

4.7 that although the velocities dlepend oin the ilondimnensional numbers tie velocity,

lprofile remains consistenut for a range of Rayleigh niumblers (Figure 4.16). Aniot her

result wvhich our nodlel configuration is sensitive to Is thle latitudinal extent of the
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superrotating jet. For our standard type simulation (with an inner boundary at about

half the radius of the planet) the jet is wider than the observation onl Jupiter (close

Saturn's superrotation). We show however that for a relatively shallow domain the

jet width is sensitive to the location of the bottom boundary. Due to the uncertainty

in the dynamics of the interior, this suggests a link between the width of the super-

rotation and the depth of the jet. This is consistent also with the weaker interior

circulation due to anelastic effcts. We find that for more turbulent flows (higher

Rayleigh number, lower Eknan number) the equatorial jet is narrower and stronger.

We focused our work on .Ju)iter paraileters lut much of our results should apply

to Saturn as well and to a lesser extent to Uranus and Neptune which probably have a

much shallower dynamical region. This brings the question of why are the equatorial

winds on the gas giants superrotating, while on the ice giants they are subrotating'?

We described above the mechanism for superrotation on the gas planets. We find

that tile only criterion that the fluid has to obey in order to get superrotation is that

we defined a X T.P is greater than one. Descriptively that means

that the fluid is dominated by rotation and not by convection. We show that for

the parameters of Jupiter and Saturn this indeed is the case. This raises a question

about the ice-giants since while rotation on them is not even half as slow, convection

is at least an order of magnitude weaker than on the gas giants, implying therefore

that rotation is even more dominant. However. since the X parameter also depends

on the domain depth ,the X parameter may still be less than one for tile ice-giants.

Particularly, given the gravitational acceleration on the ice-giants, if the depth of the

relevant fluid region is 30 times smaller, this would balance a flux which is an order of

magnitude smaller. Then the shallower circulation may )ring the planets to a regime

of equatorial subrotation.

Another key question is how deep are the zonal winds. Thermal wind estimates

and the Galileo probe observations have provided some data (section 1.2) yet, also

much uncertainty. The main advantage of this model compared to tile previous

Boussinesq models is that, it is closer to a realistic dynamic and thermodynamic

representation of the interior. However if tile fluid is barotropic and has small Rossby

and Ekman numbers we would still expect the Tavlor-Proudman theorem to hold

whether the fluid is Boussinesq or anelastic. We find though., that the convection does

homogenize the entropy so that baroclinic terms are still important in the vorticity

balance. Particularly the strong variation in density in the upper levels gives a big
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bairocliti ic coniutii)1ion due to) coIlipressiiliit.y. which results5 ill )i d on loc shemr

Xvithiill thIie convect ion columns. Consequently the interior zonal velocities are weaker.

This result is dlifferenit than previous suggest ions, which either assumed a (feel) source

For thle jets withI strong interior velocities or a shallow dlrivinig force and( weak interior

velocities. Therefore solely (il(, to complressile( effects we expect to find vertical shecar

resulting inl wveaker interior velocities.

R ecenit ob)servat ions have idlentified waves eilbedded wit hin thle equatorial Super-

rot ationi. W\e find wvak-es inl our simulations which are a surface manifestation of the

convect ion columnIIs anid ar' thle ref ore embuledd(ed wit hiin th siC5uiperrotalio01. It is (lif-

ficult to b)e sure the observedi waves have the sanie dynuamics. since thle observed

waves have a wavelength which is '-- 1 of tice finest grid resolut ion in our siniulatiolls.zl 3

H owever thle spacial resembuhlanice with crests ceniteredl at the equator t hat are cuirved1

eastwvard. thle p)hase sp)eedlwhc is about equal to the inean zoiial velocity. and( the

fact t hat for more turbulent flow we find waves which are narrower and( withI a higher

waVe n1i1i1lber brings us t.o hypvlothe(size that t he waves that wve see oil tile p)laliet atre

related to fine structure comnvection columins from withuin .1upiter's interior. If iindeedI

this is thle catsc. thlen b)ased onl thle lat itiuial exte(nlt. of thle waves ( 1W) tleclunii

will1 pen'ietrate 1n0 itiore than VX{ into the interior of the p)lane(t.

Another importanit qulestioni is whY is there a ntearly latitudinallY uniformn t herinal

(emiissiool 1 t lie gas giants. Since solar forcinig is stronger at t he equator and lower atl

the poles (not comnsidleriing seasonal effects), there must lbe mneridlionial hevat transport

in thle p)olewardI direction. Due to thle stroiig zonal dominance at thle cloud level it

is unlikelY that t his is a shallow process. To add(ress t his question (qlant itat ivelY we

mtust h1mve solar forciniig iin our model (sect ion 8.2.1). However thev alignmuent of the

convective heat fluxes along the direction of the axis of rotation (Figure 4.8). leads us

to hypothesize that the relative heating of the pole mnay be, associated withi transport

of' the interior heat p)olve,ard andc not, the niieridiionlal redistribution of the solar hevat.

F'inallYv we colii to the quest ion of the jet stability and multiple zonal jets. TI'he

convectioni model tvlpicall-y prodluces an eastward jet at the equator, two westward

.jets in inidllatitudie and a region doinated bY edd(ies at high latitudes. It is lprobahble

that the hiigh mieridlionial winid structure is associatedl with t urbulenit p~r~oesses that

our convect ion mnodel c,aii not. resolve (alth ough we (10 find( muiiltiple jet st ructuiires

which are not steadYv over time - section 6.2). ParticularlY important maY be shecar

pirocesses iii the upper stably stratified levels. Ili our two layer miodlel we p)rovidle
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a representation of the deep interior, and find that multiple baroclinic zonal jets

emerge from decaying quasigeostrophic turbulence. The energy of these jets comes

from baroclinic instability. These jets are stable due to eddy mean flow interactions,

similar to the processes we have seen stabilizing the superrotating jet in the convection

model. We suggest therefore that eve weak baroclinic instability (due to the weak

meridional temperature gradient) can provide al energy source for jets. This model

points to the possibility that the deep mechanism that we described previously is the

underlying basic structure of the winds, and the shallow shear processes overlay this

deep induced flow.

8.2 Future Work

8.2.1 Solar Forcing

One of the original goals of this work was to study tile interaction between tile coil-

vective driven flow and the circulation driven by solar forced ineridional temperature

gradients. We have experimented with cases where the interior is driven by the reg-

ular convection, while the top is forced by a latitudinally varying entropy gradient,

so that the upper levels are gravitationally stable. The problem of having a model

which can both treat the convection and resolve shear instabilities turns out to be

very computationally demanding. The problem rises since the viscosities which must

be used for the convection problem make tile Reynolds number too small for shear

instabilities. We have experimented with different ways of resolving this problem

such as separating the horizontal and vertical values of the i)hysical parameters, and

increasing the resolution of the simulation. We have had only partial success in doing

this and this is left for future research. An inherent problem is that in a convective

system the (eforimation radius by definition is non-existent to extremely small, and

therefore resolving this scale is not possible. The existence of a stably stratified layer

on top is therefore essential.

We will show however sorie very initial results of tile 2D system. In Figure 8.1

we show two cases where one is driven only by an exterior temperature gradient with

no internal convection (left panel), and the second has both internal and external

driving. The external forcing creates a large Hadley type cell which in the presence of

convection is broken by the convective structures which as we have shown in Figure
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Figure 8.1: 'Ihel incridlionl st reaniifunictioni for cas;es dIriveni bY onlY an exterior teni-

perat,ure gradient (left) and both internal convectioni and a simiilar exterior forcing
(right).

3.4 when comparing the 2D and 3D resuilts. and are stronger at high latitudes ill '2D.

Since these are onilY 2 D cases there is no equatorial superrot at ion. W\hen repeating

those exp)erimhents in 3D for the parameoter regime of the convect ion inodIel we findl

simiilar large HadleY tYpce st ructutres withI anl associated zonal velocit.y wich increases

away from tile equator. As mentioned the interactio01 of thle exterior and interior

forced sYstoin in 3D is left for [uture work.

8.2.2 Gravitational Moments

Since the giant planets have short rotat ion p)eriod1s ando they are essentially flido

objects, the p)lanoets bulge out at the equator in response to the centrifugal force (see

Table 1 .1) .Since we have mtade the appIroximnation of using a sphere and not an

olblate sphere wve (10 not exp)ect that wheon calculating the low ordler gravitational

moments froin tile (densit.-v field tllhe, would inatch t he lanoit s low ordler gravitatijonal

moments. However the higher order mionients are less dependent on the oblateness of

thle planet. Hubbard (1999) has suggested that precise nmeasuremnents of the hligh ordler

gravitational moments c-an give informiatio 10oil the (deelp windl st ructutre of tile p)lanct.

He showed that two extrenia cases, one where thle wNhole lplanet rotates as a solid

b)od.v and the other where there is rotation along concentric cYlinders x,sgetdb

B3usse (1976) dliffer considerably beyond the tenith inoniient. Ini this section we look

at sensitivity of the gravitational nionents calculated1 for our mIodoel for two cases. anl
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anelastic and Boussinesq case.

The gravitational potential outside a planet satisfies Laplace's equation and in

spherical coordinates (but limiting to an axisymmetric solution) has a solution of the

form

E + B,(,r -(n) ) P (sil 0)
n

where P,, are Legendre polynomials . Assuming the potential will tend to zero as r

goes to infinity allows taking An = 0. Then taking the gradient of the potential we

can find the gravitational acceleration as a function of the radius

-(r,. G (I J( (sin 0)
T' 2

where G is the Cavendish constant and M is tile mass. W\e can then compute J,
by calculating the appropriate moments of the density distribution. Thus given the

density distribution from our model we can calculate the gravitational moiments.

In Figure 8.2 we compare the moments resulting from our model for anelastic and

Boussinesq 3D cases to the ones estimated by Hubbard (1999). Time green and black

dots are the moments for a model where tile planet is rotating like a solid body and

where the planet is rotating along concentric cylinders respectively as calculated by

Hubbard (1999). The diamonds are the observed values for J 2, J 4 and .16 as, measured

using Pioneer and Voyager data (Campbell and Synnott, 1985). As can be seen from

the green and black curves beyond T, = 10 the two scenarios tested by Hubbard

diverge significantly. Tile red points are the moments calculated using the density

anomalies from the anelastic model, and blue points are the moments calculated using

the density anomalies from the Boussinesq model. Since our model is a symmetric

sphere the low order moments which are dominated by tile oblateness of the planet

do not appear in our calculations. The ,Js moment however matches Hubbard's model

for both the anelastic and Boussinesq cases.

Tile significance of the this result is still to be determined. We have tested the

sensitivity of the gravitational imomnent results and found so far that for experiments

Ral and Ra2 (Table 6.1) time moments are affected somewhat by time choice of time

Rayleigh number but we could possibly estimate this effect by a limiting to Rayleigh
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Vigure 8.2: Gravitatijonal inients for (lifferent interior velocity' st nictuires. The green
(lots are th lininents for a mtodlol where the planiet is rotating like a solidl bod 'vand( the
black (lots are the miomients where the planet is rotating along concentric cyvind (ers.
In 1)oth cases thle dlata is courtes v of Bill Hub)bard1. The dliamIondls are the ob)served
values (Canipbell and S *vinot t. 1983). The red points are the niomient s uising our
atielastic m1odel. and1 blue points are the itonients using thle Botissines( nio(del. The
solidl line is the dletectale linfit. of . o

1111111bers that have velocities onl the ordler of the ones on the planet. A p)articular (pies-

tion that. hias been raisedI is a dliscrepancY b)etweenl the theoretical and the observed 11~

mioiment s. O ne possib)ilit.N is that. this discrep)ancy is due to (denisitY [inctunat ions due to

the Velocity fields (wh ich mre not taken inuto accou nt in the theoretical calcumlat iols).

St td.ving thme effect of doensitY fluctuationis In our inodel on 1J1 mmight help in addlress-

ing the inmportanlce of the circulation relatedl densit.N f-Ilictliations. This stuidy i's in

verty. p)relilminary stages. and is brought as an add(endum to the heisis. highlighting

a possible particular impllenmentat ion of our miodel. This becomes now p)articu larIY

relevant due t.o the upcoming J1UTNO miission to .JupIiter, wvhiichi will mecasure the high

ordher gravitY nonients ini ordler to try anid solve the question of how (dee) are the

zonal winds. The mnission is schedluled to be lainiched in 2011 and( reach .Jupiter ini

2017. The solidl black line ini Figure 8.2 is the detectable liniit of .JUNO. The model

inight, be able to distinguish between the gravitational signatumre of' different velocitY

structures and( add(ress thme discrepaticY in J14.
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Appendix A

Applying the Deep Anelastic System

to the MITgcm

In this appendix we discuss soime of the technical details associated with adapting the

MITgcn to giant, planets. Due to the nonhydrostatic capability of the ocean-MITgcin,

we have chose to use it over tle atmospheric version. The atimospheric version would

allow to treat more easily the compressibility effects, but addapting the nonhyrostatic

version to pressure coordinates adds other difficulties (see further discusion in section

2.1). Therefore we adopt the anelastic approximation and use the ocean-MITgcin.

Extending the model to a full sphere

The NIT1'gcin has been designed for for calculations on a thin spherical shell, and

therefore did not allow a vertical variation of the grid size (the zonal grid does varyx

as a function of latitude). The depth of the ocean is typically less than 0.11 of the

radius of the planet, aii(] thus allowing such an approximation. When extending the

model to a full sphere, horizontal grid size must change as a function of depth and

maintain all vertical fluxes. We have applied this by defining a geometrical factor

based on the spherical geometry, which is set in a vector that multiplies all zoilal

and ineridional grid spacings (dx and dy). We have verified this modification bv

comparing results for for diflerent planet radii, and comparing fluxes and geometrical
factors in simple test cases.
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Applying the anelastic dynamics

Similarly to redefining the grid spacings we have defined a vector that multiplies

the mean density by a factor which varies as a function of depth. This factor is

calculated from the mean density which is set by the adiabatic reference state and

the equation of state (see below). Having the model written in flux form allowed

inserting these factors directly into the divergence. The MITgcm solves first for the

hydrostatic pressure (2D solver) and then for the nonhydrostatic part (3D solver). In

both the Laplace type equation for pressure is solved in an iterative process. Making

the density a function of depth requires special care since the vertical components

have an additional terms (3D solver). We have checked consistency in the Boussinesq

limit (although the Boussinesq limit is simpler not only because the independence

of 5 but also because the density fluctuations from the equation of state are not a

function of pressure), and verified fluxes consistantancy.

Implementing interior and exterior forcing

We have discussed the interior forcing by a continuous forcing profile in section 2.5.

This is implemented by using the mean temperature profile T (set by the reference

state) to calculate the forcing in (2.48). We then constrain the heating so that, when

integrated over the whole volume, the total forcing will be zero, and thus no net

heating is added from the system. We do so by integrating this profile weighted by

the vertical grid spacing and the mean density. This basically shifts the cooling profile

of the planet so that the interior is heating and the exterior is cooling. The heating for

every vertical level is added to the external forcing routine of the MITgcm as entropy

per unit time. The second, simpler, profile we have used and discussed in sections

3.1.2 and 6.4 is simply applying a heating rate to the bottom boundary. We balance

the heating by relaxing the top few layers to a reference temperature which we can

deduce from the observed values (Seiff et al., 1997). The solar heating is applied as

a meridionally varying heating of the top grid levels. We apply this in the same way

as the bottom heat flux with a Newtonian relaxation on top (section 8.2.1).
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Setting the reference state

The reference state of the model is first set by setting the vertical grid spacing. We

have found that the most numerical stable configuration is to set a constant factor in

which the mean pressure grows as a function of depth down to a depth beyond which

the vertical grid spacing itself is constant. Using a geometric series in mean pressure

all the way down will require a very high resolution at the top of the atmosphere.

in order to get reasonable representation of the interior. Using constant grid spacing

throughout is not, necessary because most of the scale heights are on top. Another

possibility which can be attempted is setting a constant number of grid points er

scale height, but this might have an unnecessary resolution in the interior. Once

the vertical pressure spacing is set we use the tables of Guillot and Morel (1995), to

determine the relative depth of each mean pressure level. This allows calculating the

level depths (dz), which are the input of the ocean MITgcm.

As discussed in section 2.2.1 we assume an adiabatic reference state. We use the

data from the Galileo probe (Seiff et al., 1997) to set the constant reference entropy

level of the adiabat. Then using the SCVH EOS (Saumon et al., 1995) we can find

the temperature and density vertical profiles of this adiabatic reference state. We

find that this profile based on the entropy value found by the Galileo probe (which

is close to being constant, but goes down only to 24 bars) matches well the deep

temperature and density profiles of Guillot and Morel (1995), (Figure 2.5). Once the

density, entropy, pressure and temperature vertical profiles are set, we can calculate

the local density dependence on entropy along isobars, and the density dependence

on pressure along the adiabat, which will be the coefficients for the equation of state.

Implementing the SCVH equation of state

For the ocean-MITgcm the EOS is given as a polynomial, where density is a function

of potential temperature and salinity. We take advantage of this framework (poly3),

and set, the density as a function of entropy and pressure. \Ve define a revised entropy

variable so that entropy could be written in terms of potential temperature so that

this converted entropy is defined as

- T(1)
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where a' is the original entropy in entropy units, and Cp is the isobaric specific

heat for an ideal gas (we show it does not vary considerably even in the interior).

Therefore the entropy has an arbitrary constant (the reference level) in its value but

this does not effect the dynamics set by equations (2.8,2.9,2.10,2.7,2.28 and 2.47).

For every level in our vertical grid we then match a polynomial to the variation of

density as function of entropy along the mean isobar. This gives us a vector with the

leading order coefficient of the polynomial (for each vertical level) which we then use

for the dependence of density on entropy in the EOS. The second set of coefficients

(dependence of density on pressure along an adiabat) is simpler since the reference

state is adiabatic and therefore these coefficients can be deduced from the mean fields.

We calculate the vertical gradient of density in respect to pressure for every vertical

level and obtain a second set of coefficients. Then using the framework of the poly3

EOS we determine the full density as a sum of the reference mean density for each

vertical level, and the entropy and pressure anomalies weighted by the coefficients

described above so that

p(s,P) + - (A.1)

For a Boussinesq system the density anomalies will not be a function of pressure and

therefore we set the second set of coefficients to zero and the last term vanishes. This

reduces computation time by almost an order of magnitude compared to the anelastic

case, since the pressure fluctuation is obtained from the previous time step, and

therefore requiring a small time step (typically 5seconds for the 1 resolution runs).

We have shows in section 4.3.2 the necessity of including the pressure anomalies in

the EOS for the anelastic case. We also use the SCVH EOS to calculate the density

and temperature mean profiles along the adiabat we have set for the reference state

as described above.

Implementing the variation in gravity

In the terrestrial spherical shell models, since the model occupy only a small fracture of

the planetary radius, the gravitational acceleration is taken as a constant. Here, in the

deep model we can not make this approximation, and we calculate the gravitational

acceleration separately for every vertical grid point. This is calculated by integrating

the mean density (2.4) from the interior to the vertical level where g is calculated.
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We calibrate the interior values so that the gravitational acceleration at the surface

miatches that measured on Jupiter. The model is then given this vector similar to the

way we im-tplement the vertical variation in grid1 size and( dlensity.
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Appendix B

Nonlinear Truncated Solutions for the

Two-Beta Model

B.1 The Derivation of the Truncated Model

In this Appendix we derive the nonlinear solution for the truncated model. X*e begin

Y)v rewriting the barotropic and bIaroclinic )erturbation equations using QI' and Q(,
as defined bY (7.18 and 7.19).

a0t aax+ T Q'

+,r , (1-) + 1 (5(,. q(,) 0 (B. 1)

aqtI + UC: q7 + c( + QI c
Ot& x' ax,r) ra

+Qc ( 0 '0 O-- + , (0, + +Oc',qc) + .(c, q,q) 0 (B.2)+ ( O'r ar O

Expressing tlie perturbation potential vorticity as a single perturbation wave (7.22,

7.23) and using the inversion relations (7.24, 7.25) for the streanufunctions, we find

that the .lacol)ians in the barotropic equations vanish while the ones in the baroclini

equations give an exJ)ression of the forin

--- q =' (t) sM (21y) (B.3)
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as given by (7.26). Using the inversion relation (7.28) and the boundary condition

(7.8) gives an expression for the correction to the basic streamfunction given by

¢c = -qC' (t)OC = -(B.4)
412 + F + F2

[ s(2y)- sinh [F, + F2 (y- 1)]
s ( 1  +F2cosh ( 2 2 ) I

which when differentiated gives a correction to the mean flow as given in (7.29).

Now we rewrite the barotropic and baroclinic perturbation equations (B.1,B.2) using

(7.22,7.23 and B.3). For clarity we note that the baroclinic basic zonal flow now has

the form

UC = UO + Uc- UO + a±qc (t) f.(y) (B.5)

where ft is defined by (7.29). Then (B.1,B.2) become

sin(ly)-q a Q iksin(ly)) Vo + qcf.) q1 - QT (.6)

(Qc + 2lcos(2iy)) q' + F1 0
aJ

a (sin(ly)q'c + sin(2/y)q'c) + (B.7)

iksin(ly) (Uo + qJf ) (q' + q') - QT 2 ± + F2

(Qc+21--cos(21y)) K 2 F 2 )]

ikI sin(21y) (F, + F 2) / 0 ,, I
;2 (r2 + F + F 2) qCq7 - qCqT 0
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Multiplying by sin(ly), integrating over the channel and normalizing by j sin(ly)2 dy

gives

-qT + ik (Uo + q - QI,,, (B.8)

Ot II-a-q~~~. + k -- I ____
q- lQ K2 + F, + F 2

_0 , [(U + (q , q I qC (B.9)
(o c c 2 + F, + F2

c C:) (L q'" )
QK'2  K 2 + F1 + F2

where the integral I,, is defined as

-/
4 ±=F(B. 10)412 + F, + F2

"T +r/-+F2(412 +F, + F2)

while projecting by sin(21y) gives an equation for the baroclinic mean correction

-- ikl(F F2) [, - q (B. 11)
Ot K, ( + F1 +/F 2 ) I -

Equations (B.8, B.9 and B.11) define the systein which we can solve for q'., q"(/

and q. We rewrite the equation for the perturbation (B.8) and (B.9) in the formi

q+-ikLq+ikq'N q  = 0 (B.12)

where q ( 'I an(I the operators are
qC

L =2 = 0 O 2 .TI±IO (B.13)

N0 /' + 2p + p.2 (B.14)
2 u01I l 2 ,2 :+Fl +F2
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The limit where N = 0 gives back the linear problem.

B.2 The Weakly Nonlinear Limit to the Truncated

Model

In this section we give the full derivation for the analytic expressions for the compo-

nents of the Landau-Gintzburg equation for the amplitude of the weakly nonlinear

perturbation given in (7.40). This limit where the shear is taken to be just slightly

supercritical is similar to the weakly supercritical theory of Pedlosky (1970), only for

a more general case of different layer depths and a variable /3. In the linear problem
we noted that (7.33) the linear growth rate is proportional to A2, where A was a

small increase to the critical shear . Therefore we can define a slow time scale (so far

we have treated the truncated nonlinear problem without requiring it to be weakly

supercritical or defining a slow time scale) thus

-4 + (B.15)
at at O

and the slow time expansion sets the operator

L = L0 + AL 2  (B.16)

where Loand L 2are

Lo =
2+F,+F2  (B.17)

1K 2F2+F+F2

-V6Fl + F 2  
F1+F2

__ K V 2  F2+F, +F±2 (B. 18)vF + F2  +[1-(F 1-+F 2 )]
r,2 2F,F2+V"6(r 2 +F1+F2) + 2+F1 +Y2

for Uo --+ Uo + A. We expand

q =e~A' [qo + A Iq, + Aq2 + 0 ('A )2 (B. 19)

and we assume the system is weakly nonlinear thus N will be 0 (A). By the choice

of co as the growth rate, q0 does not depend on t. q1 and q2 may depend on t but

when expanding, the solvability condition implies that all have the same t dependents
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(they depend differently on the slow time scale T). Then expanding (13.12) ill powers

of N, gives

O(AI) ik (La - (t) q =0 (B.20)
a a

0 (A) • q + ik (Lo - coI) q + qo= 0 (B.21)
Ot O

C) 2 -aq2 + ik (Lo - col) q 2 + -q, (B.22)
at O
+ik (L 2 + N )qo = 0

The eigenvalue co is the growth rate at the critical point, thus it is a double eigenvalue.

We define a vector r so that

qO = A (T) r (B.23)

thus r is the eigenvector of LO. rl is the left, eigenvector and since cO is a double

root then r t r - 0. Therefore if we dot the system with rt then it falls that q,

is also independent of t, and then the solvability condition implies that the terms

independent of I in the ( A ) equation vanish as well. So that the svstem becones

ik (LO - coI) q, + OA r = 0 (B.21)
OT

rf. q, + ik [rt (L2 + Nq('i:) r]A 0(1.)

The first equation defines q, so that

is OA
q= k= T (B.26)

whe?re

s = (LO - coI)-' r (13.27)

Finally the 0 (A ) gives an equation for the slow time scale growth of the amplitude

of the perturbation

rts- + k [rt (L 2 + NqC) r] A = 0 (B.28)
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All is left is to add the growth of q from the mean equation (B.11). By expanding

the same way as in the perturbation equations we find

+ 0 -+ ikl (F + F2 )

+ OT KK + F + F2)

(qO (2) +,A'2q, (2)) (q* (1) +,A2'q* 1) (B.29)
q*0(2)+ A2q 1(2) qO(1) +,A2q,(1) = 0

where the first components in the vector is the barotropic part and the second is the

baroclinic part. Since the lowest order eigenvectors are real (they are at the critical

point), the lowest order terms of (B.29) vanish. Then the slow time evolution of the

mean is

a iki (F + F 2) (B.30)
T C + 2 (K 2 + F 1 + F2)

[qo (2) q* (1) + q, (2) q* (1) - q* (2) ql (1) + q* (2) qo (1)] =0

using (B.23) and (B.26) this becomes

0-7 l(VF1 +F 2 ) (B.31)a qc + I YFi + 2)
49T' , K12 (K 

2 + F1 + F2 ) (.1

[r(2) s(1) -s(2)r(1)] 09 A 0

Integrating, assuming the correction is initially zero gives

q 2 1(F 1  F 2) (B.32)

C 2 (K2 + F + F2 )

- [r (2)s (1) - s (2)r (1)] (1A12 - JA (0)12)

which completely defines the system. Therefore given a basic shear, F 1, F2,/31 and /12

the weakly non linear stability problem can be solved.

It is clear from (B.28) that if N = 0 then (B.28) reduces to an equation with an

exponential solution and the growth rate is just the same as in the linear solution

(7.33). Therefore we can denote

2 rtL2 r (B.33)
S- rfs(
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and the nonlinear term as

N - r t NqC'r - rtNr I(F, + F2 ) (B.34)

rts rts K2 (r2 + F + F2)

[r (2) s (1) - s (2) r (1)] (JA1 2 - IA (0)12)

So finally the equation for the slow time scale amplitude is

02 A _ kC2 A + k2 NA (.412 -_ A (0)12) = 0 (B.35)

OT
2

which gives equation 7.40.
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